CS125

11.1 Finite Automata

Motivation:

- TMs without a tape: maybe we can at least fully understand such a simple model?
- Algorithms (e.g. string matching)
- Computing with very limited memory
- Formal verification of distributed protocols,
- Hardware and circuit design

Example: Home Stereo

- $P=$ power button (ON/OFF)
- $S=$ source button (CD/Radio/TV), only works when stereo is ON, but source remembered when stereo is OFF.
- Starts OFF, in CD mode.
- A computational problem: does a given a sequence of button presses $w \in\{P, S\}^{*}$ leave the system with the radio on?

The Home Stereo DFA

Formal Definition of a DFA

- A DFA M is a 5-Tuple $\left(Q, \Sigma, \delta, q_{0}, F\right)$
Q : Finite set of states
Σ : Alphabet
$\delta:$ "Transition function", $Q \times \Sigma \rightarrow Q$
q_{0} : Start state, $q_{0} \in Q$
$F:$ Accept (or final) states, $F \subseteq Q$
- If $\boldsymbol{\delta}(p, \boldsymbol{\sigma})=q$,
then if M is in state p and reads symbol $\sigma \in \Sigma$
then M enters state q (while moving to next input symbol)

Another Visualization

a	b	b	a	b	a

Finite-state control changes
state depending on:

- current state
- next symbol
M accepts string x if
- After starting M in the start[initial] state with head on first square,
- when all of x has been read,
- M winds up in a final state.

Example

Bounded Counting: A DFA that recognizes $\{x: x$ has an even \# of a 's and an odd \# of b 's $\}$

Formal Definition of Computation

$M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ accepts $w=w_{1} w_{2} \cdots w_{n} \in \Sigma^{*}\left(\right.$ where each $\left.w_{i} \in \Sigma\right)$ if there exist $r_{0}, \ldots, r_{n} \in Q$ such that

1. $r_{0}=q_{0}$,
2. $\delta\left(r_{i}, w_{i+1}\right)=r_{i+1}$ for each $i=0, \ldots, n-1$, and
3. $r_{n} \in F$.

The language recognized (or accepted) by M, denoted $L(M)$, is the set of all strings accepted by M.

Another Example

- Pattern Recognition: A DFA that accepts $\{x: x$ has $a a b$ as a substring $\}$.

Another Example, To Do On Your Own

- Pattern Recognition: A DFA that accepts $\{x: x$ has $a b a b a$ as a substring $\}$.

Using DFAs for Pattern Recognition

Problem: given a pattern $w \in \Sigma^{*}$ of length m and a string $x \in \Sigma^{*}$ of length n, decide whether w is a substring of x.

Algorithm:

1. Construct a DFA M that accepts $L_{w}=\left\{x \in \Sigma^{*}: w\right.$ is a substring of $\left.x\right\}$.

- States are $Q=\{0,1, \ldots, m\}$. State q represents:
- Transitions: $\boldsymbol{\delta}(q, \boldsymbol{\sigma})=$
- Time to construct M (naively): $O\left(m^{3} \cdot|\Sigma|\right)$.

2. Run M on x.

- Time: $O(n)$

The running time can be improved to $O(m+n)$, using an appropriate implicit representation of the DFA. Widely used in practice!

Characterizing the Power of Finite Automata

Def: A language $L \subseteq \Sigma^{*}$ is regular iff there is a DFA M such that $L(M)=L$. REG denotes the class of regular languages.

The terminology "regular" comes from an equivalent characterization in terms of regular expressions (which we won't cover in lecture, but possibly will on a problem set). Note that $\operatorname{REG} \subseteq \operatorname{TIME}_{\mathrm{TM}}(n)$; it also can be shown that REG $\subseteq \mathrm{CF}$. Unlike classes associated with universal models (like TMs and Word-RAMs), we have a fairly complete understanding of the class of regular languages. In particular,

Myhill-Nerode Theorem: A language $L \subseteq \Sigma^{*}$ is regular iff there are only finitely many equivalence classes under the following equivalence relation \sim_{L} on $\Sigma^{*}: x \sim_{L} y$ iff for all strings $z \in \Sigma^{*}$, we have $x z \in L \Leftrightarrow y z \in L$. Moreover, the minimum number of states in a DFA for L is exactly the number of equivalence classes under \sim_{L}.
(Exercises: refresh your memory on the definition of equivalence relations and equivalence classes.)
Proof: \Rightarrow.
\Leftarrow. Suppose \sim_{L} has finitely many equivalence classes, where we write $[x]_{L}$ for the equivalence class containing x. We construct a DFA $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ as follows:

- Q is the set of equivalence classes under \sim_{L}.
- $q_{0}=[\varepsilon]_{L}$.
- $F=\left\{[x]_{L}: x \in L\right\}$.
- $\delta\left([x]_{L}, \sigma\right)=[x \sigma]_{L}$. (Note that this is well-defined: if $x \sim_{L} y$, then $x \sigma \sim_{L} y \sigma$, so the choice of the representative x of the equivalence class does not affect the result.)

By induction on $|x|$, it can be shown that running M on x leads to state $[x]_{L}$, and hence we accept exactly the strings in L.

Proving that languages are nonregular. To show that L is nonregular, we only need to exhibit an infinite set of strings that are all inequivalent under \sim_{L}. Some examples follow:

- $L=\left\{a^{n} b^{n}: n \geq 0\right\}$. Claim: $\varepsilon, a, a^{2}, a^{3}, a^{4}, \ldots$ are all inequivalent under \sim_{L}.
- $L=\left\{w \in \Sigma^{*}:|w|=2^{n}\right.$ for some $\left.n \geq 0\right\}$. Claim: $\varepsilon, a, a^{2}, a^{3}, a^{4}, \ldots$ are all inequivalent under \sim_{L}. Suppose $a^{i} \sim_{L} a^{j}$ for some $i>j$. Let k be any power of 2 larger than i and j. Then $a^{j} \cdot a^{k-j} \in L$, so $a^{i} \cdot a^{k-j} \in L$ and hence $k+i-j$ is a power of 2 . But $2 k$ is the next larger power of 2 after $k . \Rightarrow \Leftarrow$.
- $L=\left\{w \in \Sigma^{*}: w=w^{R}\right\}$ (palindromes).

