CS125 Lecture 13

13.1 Nondeterministic Polynomial Time

Now we turn to incorporating nondeterminism in universal models of computation, namely Turing Machines and Word-RAMs.

For Nondeterministic Turing machines, we do it just like for NFAs, now allowing multiple transitions on each state-symbol pair. That is, we allow the transition function to be a mapping $\delta: Q \times \Gamma \rightarrow P(Q \times \Gamma \times\{L, R\})$.

The generalization of computation is also analogous to what we did for NFAs.

- For a configuration $C=u q \sigma v$ (where $u, v \in \Gamma^{*}, q \in Q, \sigma \in \Gamma$), we write $C \Rightarrow_{M} C^{\prime}$ for every configuration C^{\prime} that can be obtained by applying one of the transitions in the set $\delta(q, \sigma)$ to C. (So C^{\prime} is not uniquely determined by C.)
- An NTM $M=\left(Q, \Sigma, \Gamma, \delta, q_{0}, F\right)$ accepts $w \in \Sigma^{*}$ if there exists a sequence C_{0}, \ldots, C_{t} of configurations such that
- $C_{0}=q_{0} w$,
- $C_{i-1} \Rightarrow_{M} C_{i}$ for each $i=1, \ldots, t$, and
- In C_{t}, M is in state $q_{\text {halt }}$ and the contents of the tape to the left of the first blank symbol is the symbol 1 .
- For an NTM M, the language recognized by M is $L(M)=\{w: M$ accepts $w\}$. That is, for every $w \in L(M)$, there is at least one accepting computation path of M. And for every $w \notin L(M)$, all computation paths either halt in a non-accepting configuration or run forever.
- An NTM M decides a language L if $L(M)=L$ and M has no infinite computation paths. (So M halts on every input and every computation path, without loss of generality always having an output of 1 or 0 .)

Note that the only types of computational problem we consider for nondeterministic algorithms are decision problems (i.e. languages).

One way to incorporate nondeterminism into the Word-RAM model is via the GOTO command:

- We allow instructions of the form "IF $R[i]=0$ GOTO $\ell_{1}, \ell_{2}, \ell_{3}, \ldots$, or ℓ_{k}." (Each choice yields a distinct computation path.)
- For a configuration $C=(\ell, S, w, R, M)$ of a word-RAM program P in which P_{ℓ} is such a GOTO command, there may be k different configurations $C^{\prime}=\left(\ell^{\prime}, S, w, R, M\right)$ such that $C \Rightarrow{ }_{P} C^{\prime}$, namely ones for each $\ell^{\prime} \in\left\{\ell_{1}, \ldots, \ell_{k}\right\}$.

For the next few lectures, we will be focused on the extent to which nondeterminism increases the power of polynomial-time algorithms:

Definition 13.1 The running time $T(n)$ of a nondeterministic algorithm A (whether a TM or a Word-RAM) is the maximum number of steps to reach a halting configuration over all inputs of length n and all computation paths.
$\operatorname{NTIME}(T(n))$ is the class of languages decided by algorithms running in time $O(T(n))$, and nondeterministic polynomial time is the class

$$
\mathrm{NP}=\bigcup_{c} \operatorname{NTIME}\left(n^{c}\right) .
$$

It can be verified that the polynomial equivalence we proved between TMs and Word-RAMs extends to their nondeterministic analogues, so the class NP does not depend on which model we use, but the finer classes NTIME $\left(n^{c}\right)$ might depend on the model.

An Example: Travelling Salesman Problem

Clearly $\mathrm{P} \subseteq$ NP. But there are problems in NP that are not obviously in P (\neq "obviously not"). Such as the Travelling Salesman Problem:

- Let $m>0$ be the number of cities,
- Let D be an $m \times m$ matrix of nonnegative real numbers giving the distance $D(i, j)$ between city i and city j, and
- let B be a distance bound

Then

$$
\mathrm{TSP}=\{\langle m, D, B\rangle: \exists \text { tour of all cities of length } \leq B\} .
$$

To illustrate:

"tour" = visits every city and returns to starting point
There are many variants of TSP, eg require visiting every city exactly once, triangle inequality on distances...

Proposition 13.2 TSP \in NP

Proof: If $\langle m, D, B\rangle \in \mathrm{TSP}$, the following nondeterministic algorithm will accept in time $O\left(n^{3}\right)$, where $n=$ length of representation of $\langle m, D, B\rangle$.

- $\underline{\text { nondeterministically }}$ write down a sequence of cities c_{1}, \ldots, c_{t}, for $t \leq m^{2}$. ("guess")
- trace through that tour and verify that all cities are visited and the length is $\leq B$. If so, halt in $q_{\text {accept. If not, }}$ halt in $q_{\text {reject. }}$ (and "check")

Conversely, if $\langle m, D, B\rangle \notin$ TSP, above has no accepting computations.
But we do not know if TSP $\in P$. Indeed, all known deterministic algorithms for TSP take exponential time (in the worst case).

A useful characterization of NP

Def: A verifier for a language L is a (deterministic) algorithm V such that $L=\{x: V$ accepts $\langle x, y\rangle$ for some string $y\}$.
Def: A polynomial-time verifier is one that runs in time polynomial in $|x|$ on input $\langle x, y\rangle$.
A string y that makes $V(\langle x, y\rangle)$ accept is a "proof" or "certificate" that $x \in L$.
Example: TSP
certificate $y=$?
$V(\langle x, y\rangle)=$?
N.B. Without loss of generality, $|y|$ is at most polynomial in $|x|$.

Theorem 13.3 NP equals the class of languages with polynomial-time verifiers.

Proof:
\Leftarrow
\Rightarrow
" L is in NP iff members of L have short, efficiently verifiable certificates"

More problems in NP

- $L_{\text {fact }}=\{\langle N, M\rangle: N$ has a factor in $\{2,3, \ldots, M\}\}$.
- On HW4, you showed that this language is in Piff there is a polynomial-time algorithm for FACTORING. ${ }^{1}$ It is conjectured that no such algorithm exists (and indeed, much cryptography in use relies on this conjecture.) Recall that here we are talking about time polynomial in the length of the input, i.e. time poly $(\log N)$.
- However, it is easy to see that $L_{\text {fact }} \in$ NP:
- For contrast, the very related language Composites $=\{\langle N\rangle: N$ has a factor in $\{2, \ldots, N-1\}\}$ is known to be in P !

- Hamiltonian Circuit

$\mathrm{HC}=\{G: G$ an undirected graph with a circuit that touches each node exactly once $\}$.

Really just a special case of TSP. (why?) (Recall that we are not fussy about the precise method of representing a graph as a string, because all reasonable methods are within a polynomial of each other in length.)

All known algorithms for HC take exponential time, so we might conjecture that $\mathrm{HC} \notin \mathrm{P}$. But consider the very similar problem Eulerian Circuit:

$$
\mathrm{EC}=\{G: G \text { is an undirected graph with a circuit that passes through each edge exactly once }\}
$$

[^0]It turns out that G is Eulerian iff G is connected and every vertex has even degree! (Proven in AM107.) So $\mathrm{EC} \in \mathrm{P}$.

- Satisfiability

Def: A Boolean formula (B.F.) is recursively defined as any of the following:

- a "Boolean variable" x, y, z, \ldots
- $(\alpha \vee \beta)$ where α, β are B.F.'s.
- $(\alpha \wedge \beta)$ where α, β are B.F.'s.
- $\neg \alpha$ where α is a B.F.
e.g. $(x \vee y \vee z) \wedge(\neg x \vee \neg y \vee \neg z)$
[Omitting redundant parentheses]
Given a boolean formula φ and a truth assignment a : Boolean variables $\rightarrow\{0,1\}$, the evaluation $\varphi(a)$ is defined in the natural way using the rules of boolean logic.

Prop: SAT $=\{\varphi: \varphi$ a B.F. such that $\exists a \varphi(a)=1\}$ is in NP.

13.2 The P vs. NP Problem

- We would like to solve problems in NP efficiently.
- We know $\mathrm{P} \subseteq \mathrm{NP}$.
- Problems in P can be solved "fairly" quickly.
- What is the relationship between P and NP?

NP and Exponential Time

Claim: $\operatorname{NP} \subseteq \bigcup_{k} \operatorname{TIME}\left(2^{n^{k}}\right)$
Proof:

Of course, this gets us nowhere near P. Does $\mathrm{P}=\mathrm{NP}$? That is, do all the NP problems have polynomial time algorithms? It doesn't "feel" that way but as of today there is no NP problem that has been proven to require exponential time!

The Strange, Strange World if $\mathrm{P}=\mathrm{NP}$

Thousands of important languages can be decided in polynomial time, e.g.

- Satisfiability
- Travelling Salesman
- Hamiltonian Circuit
- MAP Coloring
-

If $\mathrm{P}=\mathrm{NP}$, then Searching becomes easy

Every "reasonable" search problem could be solved in polynomial time.

- "reasonable" \equiv solutions can be recognized in polynomial time (and are of polynomial length)
- SAT SEARCH: Given a satisfiable boolean formula, find a satisfying assignment.
- FACTORING: Given a natural number (in binary), find its prime factorization.
- NASH EQUILIBRIUM: Given a two-player "game", find a Nash equilibrium.
-

If $\mathrm{P}=\mathrm{NP}$, Optimization becomes easy

Every "reasonable" optimization problem can be solved in polynomial time.

- Optimization problem \equiv "maximize (or minimize) $f(x)$ subject to certain constraints on x " (AM 121)
- "Reasonable" $\equiv " f$ and constraints are poly-time"
- MIN-TSP: Given a TSP instance, find the shortest tour.
- Scheduling: Given a list of assembly-line tasks and dependencies, find the maximum-throughput scheduling.
- Protein Folding: Given a protein, find the minimum-energy folding.
- Integer Linear Programming: Like linear programming, but restrict to integer
- Circuit Minimization: Given a digital circuit, find the smallest equivalent circuit. (Is "reasonable" if $\mathrm{P}=\mathrm{NP}$.)

If $\mathrm{P}=\mathrm{NP}$, Secure Cryptography becomes impossible

Every polynomial-time encryption algorithm can be "broken" in polynomial time.

- "Given an encryption z, find the corresponding decryption key K and message m " is an NP search problem.
- Thus modern cryptography seeks to design encryption algorithms that cannot be broken under the assumption that certain NP problems are hard to solve (e.g. FACTORING).
- Take CS 127.

If $\mathrm{P}=\mathrm{NP}$, Artificial Intelligence becomes easy

Machine learning is an NP search problem

- Given many examples of some concept (e.g. pairs (image1, "dog"), (image2, "person"), ...), classify new examples correctly.
- Turns out to be equivalent to finding a short "classification rule" consistent with examples.
- Take CS228.

If $P=N P$, even Mathematics becomes easy!

Mathematical proofs can always be found in polynomial time (in their length).

- Short Proof: Given a mathematical statement S and a number n (in unary), decide if S has a proof of length at most n (and, if so, find one).
- An NP problem!
- cf. letter from Gödel to von Neumann, 1956.

Gödel's Letter to Von Neumann, 1956
$[\phi(n)=$ time required for a TM to determine whether a mathematical statement has a proof of length $n]$

If there really were a machine with $\phi(n) \sim k \cdot n$ (or even $\sim k \cdot n^{2}$) this would have consequences of the greatest importance. Namely, it would obviously mean that in spite of the undecidability of the Entscheidungsproblem, the mental work of a mathematician concerning Yes-or-No questions could be completely replaced by a machine. ...

It would be interesting to know, for instance, the situation concerning the determination of primality of a number and how strongly in general the number of steps in finite combinatorial problems can be reduced with respect to simple exhaustive search. ...

[^0]: ${ }^{1}$ The language on the HW referred to prime factors, but the proof extends also to the above language.

