
CS125 Lecture 17 Fall 2014

17.1 The Halting Problem

Consider the HALTING PROBLEM (HALTTM): Given a TM M and w, does M halt on input w?

Theorem 17.1 HALTTM is undecidable.

Proof:

Suppose HALTTM = {〈M,w〉 : M halts on w} were decided by some TM H.

Then we could use H to decide ATM as follows.

On input 〈M,w〉,

– Modify M so that whenever it is about to halt in a rejecting configuration, it instead goes into an infinite
loop. Call the resulting TM M′.

– Run H(〈M′,w〉) and do the same.

Note that M′ halts on w iff M accepts w, so this is indeed a decider for ATM. ⇒⇐.

Proposition 17.2 The HALTING PROBLEM is undecidable even for a fixed TM. That is, there is a TM M0 such that
HALTTM

M0 = {w : M0 halts on w} is undecidable.

Proof:

Proposition 17.3 The HALTING PROBLEM is undecidable even if we fix w = ε. That is, the language HALTε
TM =

{〈M〉 : M halts on ε} is undecidable.

Proof:

Q: What if we fix both M and w?
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17.2 Mapping Reductions

Definition 17.4 A (mapping) reduction of L1 ⊆ Σ∗1 to L2 ⊆ Σ∗2 is a computable function f : Σ∗1→ Σ∗2 such that, for
every w ∈ Σ∗,

w ∈ L1 iff f (w) ∈ L2

We write L1 ≤m L2.

(Note that here we do not require that f is computable in polynomial time.)

Lemma 17.5 If L1 ≤m L2, then

• if L2 is decidable (resp., r.e.), then so is L1;

• if L1 is undecidable (resp., non-r.e.), then so is L2.

Examples:

• ATM ≤m AWR and AWR ≤m ATM.

• For every Turing-recognizable (=r.e.) L, L≤m ATM (so ATM is “r.e.-complete”).

• ATM ≤m HALTTM.

• HALTTM ≤m HALTε
TM.
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17.3 Rice’s Theorem

Informally, Rice’s Theorem says every (nontrivial) of the r.e. languages is undecidable.

Theorem 17.6 (Rice’s Theorem) Let P be any subset of the class of r.e. languages such that P and its complement
are both nonempty. Then the language LP = {〈M〉 : L(M) ∈ P} is undecidable.

Thus, given a TM (or Word-RAM program) M, it is undecidable to tell if

• L(M) = /0,

• L(M) is regular,

• |L(M)|= ∞, etc.

Proof:

• We will reduce HALTε
TM to LP .

• Suppose without loss of generality that /0 /∈ P .

• Pick any L0 ∈ P and say L0 = L(M0).

• Define f (〈M〉) = 〈M′〉, where

M′ is TM that on input w,

· first simulates M on input ε

· then simulates M0 on input w

• Claim: f is a mapping reduction from HALTε
TM to LP .

• Since HALTε
TM is undecidable, so is LP .
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17.4 Tiling

TILING: Given a finite set of patterns for square tiles:

More Turing-recognizability, Undecidability 5

Tiling

Tiling: Given a finite set of patterns for square tiles:

Is it possible to tile the whole plane with tiles of these patterns in such a way that the abutting
edges match?
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Theorem: Tiling is undecidable.

Variant of tiling: fix the tile at the origin and ask whether the first quadrant can be tiled (easier
to show undecidability).

Proof by reduction from Lε:

– 〈M〉
f
#→ sets of tiles so that:

M does not halt on ε ⇔ f(〈M〉) tiles the first quadrant.

– View computation of M as “tableau”, filling first quadrant with elements of C = Q ∪ Γ,
each row being a configuration of M .

– Computation valid iff every 2 × 3 window consistent with transition function of M (and
bottom row is correct initial configuration).

– Each tile represents a 2× 3 window of tableau. Edge colors force consistency with neighbors
on overlap.

Is it possible to tile the whole plane with tiles of these patterns in such a way that the abutting edges match?
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Theorem: Tiling is undecidable.

Variant of tiling: fix the tile at the origin and ask whether the first quadrant can be tiled (easier
to show undecidability).

Proof by reduction from Lε:

– 〈M〉
f
#→ sets of tiles so that:

M does not halt on ε ⇔ f(〈M〉) tiles the first quadrant.

– View computation of M as “tableau”, filling first quadrant with elements of C = Q ∪ Γ,
each row being a configuration of M .

– Computation valid iff every 2 × 3 window consistent with transition function of M (and
bottom row is correct initial configuration).

– Each tile represents a 2× 3 window of tableau. Edge colors force consistency with neighbors
on overlap.

Theorem 17.7 TILING is undecidable.

The proof of this theorem is quite involved for the general, unconstrained version of tiling. Instead, we’ll prove
undecidability for a variant of tiling, where we fix the tile at the origin and ask whether the first quadrant can be
tiled.

Proof: We’ll reduce from HALTε
TM.

• 〈M〉 f7→ sets of tiles so that:

M does not halt on ε⇔ f (〈M〉) tiles the first quadrant.

• View computation of M as “tableau”, filling first quadrant with elements of C = Q∪Γ∪{#}, each row being
a configuration of M, except we fill the bottom-most row and left-most column of the tableau with #.

• Computation valid iff every 2×3 window consistent with transition function of M (and bottom row is correct
initial configuration).

• Each tile represents a 2×3 window of tableau that is consistent with the transition function of M. So the set
of tiles is a subset of C6.

• Edge colors are C3∪C4, where C3 is the set of colors used for the top and bottom edges of tiles (representing
the two rows in a tile) and C4 is used for the left and right edges of tiles (representing two overlapping 2x2
squares of the tile).

• Tile for origin is

# q0 t

# # #
.
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17.5 Diophantine Equations

Diophantine Equations are equations like

x3y3 +13xyz = 4u2−22

The coefficients and the exponents have to be integers. (No variables in the exponents!)

The question is whether the equation can be satisfied (made true) by substituting integers for the variables—
this is known as Hilbert’s 10th problem.

“Given a diophantine equation with any number of unknown quantitites and with rational integral
numerical coefficients: To devise a process according to which it can be determined by a finite
number of operations whether the equation is solvable in rational integers.”

Diophantus of Alexandria (200–284 AD)

• “God gave him his boyhood one-sixth of his life, One twelfth more as youth while whiskers grew rife; And
then yet one-seventh ere marriage begun; In five years there came a bouncing new son. Alas, the dear child of
master and sage, after attaining half the measure of his father’s life, chill fate took him. After consoling his
fate by the science of numbers for four years, he ended his life.”

• Other problems concerning triangular arrays, etc., gave rise to quadratic equations.

• Fermat’s statement of his “Last Theorem” was in the margin of his copy of Diophantus.

Theorem 17.8 (Matiyasevich, 1970) Hilbert’s 10th problem is undecidable.

Theorem 17.9 A set S ⊆ N is r.e. iff it is of the form {x : (∃y1,y2, . . . ,yn)P(x,y1,y2, . . . ,yn) = 0} where P is a
diophantine equation with n+1 variables ranging over N.

In fact, the theorem is true even with n = 9!

Other Undecidable Problems

• ALLCFG: Given a context-free grammar G, is L(G) = Σ∗?

• The WORD PROBLEM for Finite Groups: Given a set of group generators x1,x2, . . . ,xn and a set R of relations
between them (e.g. x1x2 = x2x1,x3 = x1x2

2x3, . . .).
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17.6 Undecidability and Gödel’s Incompleteness Theorem

Fix an axiom systems for mathematics, e.g.

– Peano arithmetic — attempt to capture properties of N
E.g. [φ(0)∧ (∀n(φ(n)⇒ φ(n+1)))]⇒∀n φ(n).
What axiom is this?

– Zermelo-Frankel-Choice set theory (ZFC) — enough for all of modern mathematics

E.g. ∀y∃z[∀x(x ∈ z)↔ (∀w(w ∈ x)→ (w ∈ y))]
What axiom is this?

Proofs of theorems from these axiom systems defined by (simple) rules of mathematical logic.

From now on, we fix any axiom system that is:

– An extension of Peano arithmetic

– Sound & consistent: cannot prove false statements

– r.e. (e.g. there is a simple rule for listing the axioms).

Entscheidungsproblem is German for “Decision Problem.” The Decision Problem is the problem of deter-
mining whether a mathematical statement is provable.

Proposition 17.10 The set of all provable theorems is Turing-recognizable.

Proof:

Q: Is it decidable?

Theorem 17.11 (Church, Turing) The set of all provable theorems is undecidable.

Proof sketch:

– Reduce from HALTε
TM.

– 〈M〉 7→mathematical statement φM = “(∃n)M halts on ε after n steps”.

– Claim: M halts on ε iff φM is provable.

Theorem 17.12 (Gödel’s Incompleteness Theorem) There is a statement φ such that neither φ nor ¬φ is
provable.

Proof sketch:
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– Suppose for contradiction that for all statements φ, either φ or ¬φ is provable. By consistency, both
cannot be provable.

⇒ Set of provable theorems r.e. and co-r.e.

⇒ Set of provable theorems decidable.

– Contradiction.

Opening up the diagonalization and the reductions get explicit φ that essentially says “I am not provable”.

Gödel’s Letter to von Neumann, 1956: Can we decide in time O(n) or O(n2) whether a mathematical
statement has a proof of length n? If so, “it would obviously mean that in spite of the undecidability of
the Entscheidungsproblem, the mental work of a mathematician concerning Yes-or-No questions could be
completely replaced by a machine. . . .”

– This is an NP-complete problem!


