
CS 224 Advanced Algorithms — Spring 2017

Problem Set 3
Due: 11:59pm, Monday, February 27th

Submit solutions to Canvas, one PDF per problem:
https://canvas.harvard.edu/courses/21996

Solution max page limits: One page each for problems 1, 2, and 4, and two pages for
problem 3

See homework policy at http://people.seas.harvard.edu/~cs224/spring17/hmwk.html

Problem 1: Consider splay trees. For any access sequence σ = (x1, x2, . . . , xm) for each
i ∈ {1, . . . , n} and fixed binary search tree T , let CT (σ) denote the cost of servicing σ
with T . Let S(σ) be the cost of servicing σ with a splay tree. We showed in class that
S(σ) = O(m+ n2 + CT (σ)).

(a) (7 points) Modify the weight function we used in class to show that in fact S(σ) =
O(m+n log n+CT (σ)). As in the analysis in class, your proof should not use the fact
that the optimal tree achieves the entropy bound.

(a) (3 points) Deduce that if each i ∈ {1, . . . , n} appears in σ at least once, then S(σ) =
O(m+ CT (σ)).

Problem 2: (10 points) Define the Fibonacci numbers by F0 = 0, F1 = 1, and Fk =
Fk−1 + Fk−2 for k > 1.

(a) (3 points) Prove that for any integer k ≥ 0, 1 +
∑k

i=0 Fi = Fk+2.

(b) (7 points) Prove that for any node in a Fibonacci heap (not necessarily a root) with
k children, the size of its subtree including the node itself is at least Fk+2. Thus, in
particular, any top-level tree in the heap of rank k has size at least Fk+2. Hint: I
recommend induction on something other than k.

Problem 3: (10 points) In Fibonacci heaps, when a node x loses 2 children, the subtree
rooted at x is cut from x’s parent and becomes a new tree in our top level forest. Suppose
that instead we cut x’s subtree away from its parent only after x loses k children.

(a) (5 points) Show that the amortized cost of decrease key is reduced as k increases. How
does it decrease as a function of k? Note decrease key already has amortized cost O(1)
when k = 2, so the point here is just that the constant inside the big-Oh improves.
Hint: modify the potential function from class.

(b) (5 points) Which operation(s) increase in amortized cost due to this change? Give a
new bound as a function of k.



Problem 4: (10 points) You may remember the “disjoint forest” data structure for solving
the union-find problem from your undergraduate algorithms course. If not, in the union-find
problem we maintain a partition C of {1, . . . , n}. We should support two operations:

• Union(i, j): let S ∈ C be the partition containing i and T ∈ C the one containing j,
and remove both S and T from C and add S ∪ T to C in their place.

• Find(i): return any element in the partition S ∈ C that contains i, however, our data
structure must obey the property that if i and j are in the same partition S, then
Find(i) and Find(j) must return the same value.

One way to solve the above union-problem is to use the disjoint forest data structure.
This data structure maintains a forest of rooted trees (not necessarily binary!). The nodes
correspond to the elements {1, . . . , n}. Each tree is a set in the partition. For any given
tree, the root is the element which is returned during a Find for any element in that tree.

Algorithm Find(x):

1. if parent[x] is NULL, then return x
2. else return Find(parent[x])

Algorithm Union(x, y):

1. x← Find(x)
2. y ← Find(y)
3. if x 6= y, then parent[x]← y

We can see that the running time of Find is the depth of x in its tree, which can be quite
bad (it is not hard to do a sequence of Unions that cause some tree to be very imbalanced:
even a path!). To remedy this issue, one simple heuristic is path compression. When we do
a Find on some node x, note we touch all of x’s ancestors in its tree before reaching the
root r: that is, we touch x, then x’s parent p1, then p1’s parent p2, etc., until we touch some
level-t ancestor pt = r. With the path compression heuristic, after executing Find(x), we
then change the parent pointers of x as well as all the p1, . . . , pt−1 to now point directly to r.

Algorithm Find(x):

// with path compression
1. if parent[x] is NULL, then return x
2. else

(a) r ←Find(parent[x])

(b) parent[x]← r

(c) return r

Prove that the amortized costs of Union and Find with path compression are both
O(log n). Hint: use the same potential function as for splay trees with w(x) = 1 for each x
(though the intended analysis is not at all related to that for splay trees, and is much more
intuitive in this case!). Note: for those familiar with the “union-by-rank” heuristic, note
that we are not using it here!

2


