CS 224 ADVANCED ALGORITHMS — Spring 2017

PROBLEM SET 4
Due: 11:59pm, Wednesday, March 8th

Submit solutions to Canvas, one PDF per problem:
https://canvas.harvard.edu/courses/21996

Solution max page limits: One page each for problems 1 and 2, and two pages each for
problems 3 and 4

See homework policy at http://people.seas.harvard.edu/~cs224/springl7/hmwk.html

Problem 1: (5 points) Prove Theorem 6 from Lec. 10 (“approx. complementary slack-
ness”).

Problem 2: (5 points) Consider here the purely multiplicative form of competitive ratios:
we say that an algorithm 4 has competitive ratio « if for every input sequence o, C4(0) <
a-OPT, where C'4(0) denotes the cost of A on 0. Recall in weighted paging we have a cache of
size k, and there are n pages where each page p has some weight w(p) > 0. For the purposes
of this problem, when we compare an online weighted paging algorithm with OPT, we assume
that both of their caches are empty at beginning of processing 0. Recall in class we said
that weighted paging reduces to k-server, by having one metric space point per page with
the distance d(p, q) between pages being (w(p) +w(q))/2. This almost works, but not quite:
if some server visits a sequence of pages py,...,p, over the course of processing o, then this
server has added an amount to our total cost equal to (1/2)(w(p1) +w(p,)) + > iy w(Di).
Thus, the first and last page are only half counted, which is not quite right.

In this problem, you are to fix the above reduction. In particular, show that if A achieves
a purely multiplicative competitive ratio of a for k-server, then for every € > 0, A can be used
in some subroutine A, which solves weighted paging with a purely multiplicative competitive
ratio of at most a + e.

Problem 3: (Problem due to Nikhil Bansal). In Lecture 9 we showed that 1-bit LRU is
k-competitive. Let us try to give a different proof using the online primal-dual framework.
First, let’s write the primal LP. Let £ denote the size of cache and n denote the total number
of pages in the universe. There are variables z! for each page ¢. This is intended to be 1 if
1 is absent from the cache immediately after servicing the request time ¢, and 0 otherwise.
Let r(t) € {1,...,n} denote the page requested at time ¢. The variable z;; is intended to be
1 if we evict page ¢ at time ¢ and is 0 otherwise. This leads to the following LP relaxation:
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(a) (3 points) Write the dual of the above LP. (Note any LP can be written in the form
stated in class.) Hint: Other than the final nonnegativity constraints, there are four
types of constraints above. These should give rise to four types of variables in the dual.

(b) (7 points) Give a primal/dual analysis of the online 1-bit LRU algorithm, showing that
it suffers at most k(OPT + 1) page faults. Hint: One of the types of variables in the
dual, let’s call them the d} variables, should keep track of whether page i is marked at
time ¢. Define a potential function ®(¢) = >, d! and show that if P(¢) is the increase
primal cost at time ¢ (compared with time ¢t — 1) and D(¢) is the increase in dual profit,
then there is a way to maintain primal and dual feasible solutions online so that for
allt, P(t) <k-D(t) + (P(t) — ©(t — 1)).

Problem 4: Recall single source shortest paths problem in directed graphs with nonnega-
tive edge weights. There is a directed graph G = (V, E), |V| = n, |E| = m. We will identify
V with {1,...,n}. There is also a length function L : E — Zx( (i.e. every edge has some
nonnegative integer length). We are given a “source” vertex s. For this problem we will
assume every vertex in V is reachable from s. We would like to recover the “shortest path”
tree T' from s. T' is directed, rooted at s and with all edges pointing away from s, such that
the shortest path from s to any vertex ¢ in GG is exactly the unique path from s to ¢ in 7.
We can formulate a fractional relaxation of the problem as follows.
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Here x € R" is the vector (n — 1)1, — >°, i\ (5 1o, Where 1; is the ith standard basis
vector as a column vector. B € R™ ™ is the matrix whose columns are indexed by edges,
where the column corresponding to e = (u, v) equals 1, — 1,. Essentially we should view the
LP as finding a “flow” with s as the source, shipping out n — 1 units of flow, and where each
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other vertex absorbs one unit of low. Thus in an integral flow solution, we can decompose
the flow into paths, corresponding to the s-t paths for each other t € V.

1. (4 points) As it will turn out, there always is an optimal integral solution to the above
LP. This doesn’t mean that every optimal solution is integral though (note the optimal
solution might not be unique). Give an example input graph with nonnegative integral
length function L such that there exists an optimal solution which is not integral.

2. (3 points) Write the dual of the above LP.

3. (8 points) Prove the correctness of Dijkstra’s algorithm via a primal/dual analysis, i.e.
by building primal and dual feasible solutions where the primal is integral.

Note the edges in the shortest path tree after finding an integral solution to the primal
LP are simply the edges e with f. > 0.



