
CS 224 Advanced Algorithms — Spring 2017

Problem Set 6
Due: 11:59pm, Wednesday, April 5th

Submit solutions to Canvas, one PDF per problem:
https://canvas.harvard.edu/courses/21996

Solution max page limits: 2 pages for each of problems 1 and 2 (ignoring code included for
problem 1)

See homework policy at http://people.seas.harvard.edu/~cs224/spring17/hmwk.html

Problem 1: This problem will explore Locality-Sensitive Hashing (LSH) schemes for `1
and `2 metrics. Recall the `p norm of a vector x is ‖x‖p = (

∑
i |xi|p)1/p.

Also recall that in the (c, r)-NN problem, we have to pre-process a database of n points in
some metric space subject to queries. A query is specified by a point q in that metric space.
If q is within distance r of some database point p, we must return a (possibly different)
database point within distance cr of q with failure probability at most f .

(a) (6 points) Suppose there is a data structure for (c, r)-NN in [0, ar]d under the `1 norm
that uses space S(n, f), has query time Q(n, f), and has failure probability f . Then
show there exists a data structure for the same problem over `d1, with asymptotically
the same query time and space bounds, and failure probability at most f + 1/a. You
should assume that S(n, f) ≥ S(a, f) +S(b, f) for any nonnegative integers a+ b = n.
You should also assume Q(n, f) ≥ d, and Q(n, f) monotonically increases with n.
Hint: randomly shift a grid.

(b) (2 points) Based on the Hamming metric LSH scheme in lecture, conclude that for any
0 < δ < 1 there’s a solution to (c(1 + δ), r)-NN in `d1 with failure probability 1/5 using
space O(d′n+ n1+ρ) and query time O(d′nρ) for ρ = 1/c and d′ = O(d2/δ).

(c) (7 points) It is known that if X is any set of vectors, there is always an efficiently
computable map f : X → X ′ such that for all x, y ∈ X, ‖f(x) − f(y)‖1 = ‖x − y‖2.
This leads to (c, r)-NN schemes for `2 with ρ ≈ 1/c (by first embedding into `1 then
using (b)). Another approach is to use “SimHash”. In SimHash, we imagine that
all points in the database, as well as the query point, lie on the unit sphere (i.e.
have Euclidean norm 1). We pick a random gaussian vector g (or a random point
on the sphere would work too), and we hash x to sign(〈g, x〉). This is similar to the
rounding step in the Goemans-Williamson SDP-based algorithm for MaxCut. Consider
ρr = ρr(c) to be the “ρ” for (c, r)-NN (so ρ = supr ρr). Recall ρr = log(1/p1)/ log(1/p2),
where p1 is the probability of hash collision for points within distance r, and p2 is
the probability of collision for points at distance at least cr. Write down an ana-
lytic expression, in terms of c, r, for ρr(c) with SimHash. Then run some experi-
ment, e.g. using code, to estimate ρ for c = 2j for j = 1, . . . , 15. Does ρ asymp-
totically look like Θ(1/c)? Θ(1/c2)? Something else? And, empirically, what does

the constant in the Θ(·) look like for large c? Also, in class it was mentioned that
in recent data-dependent LSH works, performance is better in data-oblivious LSH
when points are “random”. It is true, though beyond the scope of this course to
prove, that random points on the sphere in dimension d for large d have pairwise
distances close to maximum possible (i.e.

√
2) with large probability. Thus we may

consider the case that “far points” are random, and have distance cr ≈
√

2. Again,
empirically, what is the behavior of ρr as a function of c when r =

√
2/c? Is it

Θ(1/c) or Θ(1/c2), or something else? Again, what does the constant in the Θ(·)
seem to be? Include your code. I recommend using the listings and color pack-
ages in LATEX; see for example http://tex.stackexchange.com/questions/83882/

how-to-highlight-python-syntax-in-latex-listings-lstinputlistings-command.
(see the macros at the beginning of this problem set’s source code, as well as the com-
mented out command on the following line)

(d) (Bonus, 5 points) Perform a rigorous, mathematical analysis for both ρ and ρ√2/c in
(c). Try to understand both these quantities up to 1 + o(1) factors as c grows.

Problem 2: In class we saw an idealized algorithm for estimating the number of distinct
elements in a stream. Here we will develop an idealized algorithm for the turnstile version
of this problem: x ∈ Rn receives updates of the form “xi ← xi + ∆” (the increments ∆ may
be positive or negative), and we must answer query() with a value L̃0 such that

P(|L̃0 − L0| > εL0) < 1/3. (1)

Here L0 is defined to be the support size of x, i.e. L0 = |{i : xi 6= 0}|. Note the number
of distinct elements is just L0 when all the increments have ∆ = 1 (whenever we see i ∈
{1, . . . , n} in the stream, we interpret it as the update xi ← xi + 1).

Suppose we are given a value K, which is a power of 2, in the beginning of the stream
and are promised that during a query L0 will always be in the interval [K,CK] for some
constant C ≥ 1 told to us. I propose the following first step toward obtaining an estimate
satisfying (1). Say n is a power of 2 (else round it up). We pick a totally random hash
function h : [n] → [n]. We then define `(i) to be the index of the least significant bit of
h(i), so that `(i) = j with probability 1/2j+1. Then when we see an update to the stream
“xi ← xi + ∆”, if `(i) 6= log2K, we ignore the update! Otherwise, we include the update in
the stream. In this way, we obtain a randomly sampled substream, containing only updates
to a randomly sampled subset I of [n].

(a) (2 points) Give an exact expression for P(xI 6= 0), in terms of both K and L0. Here
xI is the |I|-dimensional vector obtained by projecting x to only the coordinates in
I. Using that (1 − 1/t)t ≈ 1/e for large t, explain why your calculated expression is
bounded away from both 0 and 1.

(b) (2 points) Give a randomized algorithm A for testing whether a vector x being up-
dated in the turnstile streaming model is identically zero. Your algorithm should use
O(log(1/δ)) words of memory to have failure probability at most δ.

2

(c) (4 points) Combine (a) and (b) to obtain an algorithm for estimating L0 as in (1). Your
algorithm should use space O(poly(ε−1 log n)) when given the value K as discussed
above.

(d) (2 points) In reality, you don’t know such a K. Show how to remove the assumption
that you are given such a K while still using space O(poly(ε−1 log n)).

3

