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Abstract We propose that the first Neoproterozoic Snowball Earth event, the Sturtian glaciation, was
initiated by the injection of sulfate aerosols into the stratosphere. Geochronological data indicate that the
Natkusiak magmatic assemblage of the Franklin large igneous province coincided with onset of the Sturtian
glaciation. The Natkusiak was emplaced into an evaporite basin and entrained significant quantities of sulfur,
which would have led to extensive SO2 and H2S outgassing in hot convective plumes. The largest of these
plumescouldhavepenetrated the tropopause, leading to stratospheric sulfateaerosol formationandanalbedo
increase sufficient to force a Snowball. Radiative forcing was maximized by the equatorial location of the
Franklin and the cool Neoproterozoic background climate, which would have lowered the tropopause height,
increasing the rate of stratospheric aerosol injection. Our results have implications for understanding
Phanerozoicmass extinctionevents, exoplanet habitability, andaerosolperturbations to thepresent-day climate.

1. Introduction

The Neoproterozoic Era witnessed two Snowball Earth glaciations, the ~717–660Ma Sturtian glaciation and
the ~645–635Ma Marinoan glaciation [Rooney et al., 2015]. These glaciations are the largest episodes of
climate change in the geological record [Hoffman and Schrag, 2002], yet we do not understand how they
were initiated. Of particular importance is the transition into the first Neoproterozoic Snowball event, the
Sturtian glaciation (Figure 1), which was preceded by over one billion years of apparently clement conditions.

Previously, it has been proposed that the Neoproterozoic climate was cool as a result of the predominance of
equatorial continents with newly rifted margins and increased planetary weatherability [Cox et al., 2016;
Godderis et al., 2003; Macdonald et al., 2010; Rooney et al., 2014; Schrag et al., 2002]. The rifting of the super-
continent Rodinia occurred near the equator from ~850 to 650Ma [Li et al., 2013] and was accompanied by
the emplacement of multiple large igneous provinces (LIPs), including the Franklin LIP (Figure 1a). These
newly rifted margins and the emplacement of rift-related LIPs at low latitude would have increased global
weatherability [Godderis et al., 2003; Macdonald et al., 2010; Rooney et al., 2014] and phosphorous input to
the oceans, which would have led to more organic carbon productivity and burial in tropical deltas
[Cox et al., 2016]. A low-latitude paleogeography may have also limited the “land area feedback” in which
silicate weathering rates decline with the growth of ice sheets on high-latitude continents [Schrag et al.,
2002]. Hence, Neoproterozoic paleogeography may have been more sensitive to ice-albedo runaway.
Alternatively, it has been proposed that long-term Neoproterozoic cooling was due to decreased volcanic
outgassing [McKenzie et al., 2016]. Whether it was a change in geological sources or sinks of CO2, or a change
in the sensitivity of the silicate weathering feedback (in the sense of Maher and Chamberlain [2014]), the fact
that there were two Neoproterozoic Snowball Earth events in rapid succession suggests that background
conditions played an important role.

From this cool background climate state, various proximal triggers for the Snowball transition have also been
proposed to overcome the silicate weathering feedback, including short-term perturbations to the green-
house gas inventory [Schrag et al., 2002; Tziperman et al., 2011] and/or the planetary albedo [Bendtsen and
Bjerrum, 2002; Feulner et al., 2015; Stern et al., 2008]. Previous explanations invoking a short-term drawdown
of CO2 or methane were motivated by an apparent correlation between perturbations to the carbon cycle
and the onset of glaciation [Schrag et al., 2002; Tziperman et al., 2011]. However, recent geochronology has
demonstrated that the pre-Sturtian Islay carbon isotope excursion occurred more than 10Myr before the
initiation of the Sturtian by 716.5 ± 0.2Ma [Macdonald et al., 2010; Rooney et al., 2014; Strauss et al., 2014],
ruling out a direct link. Albedo changes due to the emergence of eukaryotic algae [Feulner et al., 2015] rely
on the coincidence of a putative evolutionary milestone for which there is no evidence. Finally, others
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have invoked albedo forcing by
meteorite impacts or explosive
felsic volcanism [Bendtsen and
Bjerrum, 2002; Stern et al., 2008].
However, there is no evidence for
a major meteorite impact at the
time of the Sturtian onset, and
albedo perturbations on the time-
scale of less than a year are unli-
kely to drive runaway glaciation.
Here we propose an alternative
scenario, in which multiyear to
decadal emissions of sulfur from
the Franklin LIP were the proximal
trigger that caused the Sturtian
Snowball transition.

2. Synchronicity of the
Sturtian Snowball
Glaciation With Eruption
of the Franklin LIP

While the Islay carbon isotope
excursion is not synchronous with
the Sturtian Snowball glaciation
(Figure 1b), the emplacement of
the largest Neoproterozoic LIP is.
The most precise date on the
initiation of the Sturtian glaciation
comes from Yukon, Canada, where
onset is bracketed between U/Pb
zircon dates of 717.4 ± 0.1 and
716.5 ± 0.2Ma [Macdonald et al.,
2010] (Figure 1c). These dates
are indistinguishable from the
most precise date on the Franklin
LIP of 716.3 ± 0.5Ma [Macdonald
et al., 2010] (Figure 1d). Volcanic
rocks associated with the Franklin
LIP cover an area of >3 Mkm2

over northern Laurentia and
southern Siberia [Ernst et al., 2016]
(Figure 1a), which was at equato-
rial latitudes during its formation
[Denyszyn et al., 2009b; Macdonald
et al., 2010]. On Victoria Island
of the Canadian Arctic, the Franklin
LIP is represented by the Natkusiak
magmatic assemblage, which con-
sists of basalt and gabbroic dikes
and sills that intruded carbonate,
organic-rich shale, and sulfur eva-
porite of the Shaler Supergroup
[Dostal et al., 1986]. The amount

Figure 1. Paleogeographic and geochronological constraints on the onset of
the Sturtian glaciation and the Franklin Large Igneous Province. (a)
Neoproterozoic paleogeography modified from Li et al. [2013] and Zhang et al.
[2013]). I = India; SA = southern Australia; NA = northern Australia; T = Tarim;
SC = South China; M =Mongolia; EA = East Antarctica; Si = Siberia; NC = North
China; L = Laurentia; NS = North Slope; ES = East Svalbard; G = Greenland;
B = Baltica; A = Amazonia; WA =West Africa; Aw =western Avalonia;
Ae = eastern Avalonia; Sf = So Francisco; C = Congo; K = Kalahari; R = Rio Plata.
(b) Neoproterozoic timeline with carbon isotope chemostratigraphy, modified
from Cox et al. [2016]. (c) Geochronological constraints on the onset of the
Sturtian glaciation. (d) Geochronological constraints on the Franklin large
igneous province. Geochronological data and sources are in Table S1 in the
supporting information. Note that the Franklin large igneous province erupted
at the equator, and the most precise date of sulfur-rich sills correlate with onset
of the Sturtian glaciation, but the carbon isotope excursions do not.
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of metamorphic CO2 released from the emplacement of gabbroic sills of the Natkusiak assemblage was small
relative to background levels and likely did not have a significant climate effect [Nabelek et al., 2014].
However, due tomelting and assimilation of sulfur from the evaporites, many of the sills and dikes have extre-
mely high sulfur concentrations, ranging from 100 to 100,000 ppm [Bedard et al., 2016], and sulfur isotope
compositions indicative of contamination from entrained sedimentary rocks (see Figure S2 in the supporting
information). Finally, these sulfur-rich sills are the same sills that have been dated at 716.3 ± 0.5Ma, which is
synchronous within error with the Sturtian glaciation onset [Macdonald et al., 2010] (Figure 1c). Inspired by
these observations, we propose that the emplacement of the Franklin LIP near the equator into a sulfur-rich
basin and subsequent sulfur emission to the atmosphere was the critical event that initiated the Sturtian
Snowball Earth.

3. Volcanic Plume, Aerosol, and Climate Modeling

During a volcanic eruption, sulfur is outgassed as a combination of SO2 and H2S [Textor et al., 2003]. Once
in the atmosphere, these gases react with O2, H2O, and OH to form H2SO4, which condenses with H2O
onto condensation nuclei to form radiatively active sulfate aerosols [Turco et al., 1979a]. Weak volcanic
plumes inject sulfur into the troposphere, where sulfate aerosols are consumed in days to weeks and
have little long-term radiative effect [Chin et al., 1996]. Conversely, strong plumes penetrate the tropo-
pause and reach the stratosphere, where H2SO4 aerosols can have lifetimes of a year or more
[McCormick et al., 1995].

Unlike explosive volcanic eruptions such as the 1991 Pinatubo event, the eruptions associated with the
Franklin LIP were basaltic in nature, leading to large fire fountains that would have driven hot convective
plumes into the atmosphere [Stothers et al., 1986]. This has two major consequences. First, the probability
of a hot volcanic plume penetrating the tropopause is determined by the degree of thermal energy at the
plume base, which can be very high given that basaltic magmas typically have temperatures of 1000 K or
more. Second, and most critically, basaltic eruption sequences during LIP formation can occur over very long
time periods (years to decades), potentially causing a much longer-term climate impact [Self et al., 2014].

To evaluate our hypothesis that the Sturtian glaciation was initiated by the creation of sulfate aerosols from
equatorial basaltic volcanism, we modeled the height to which hot, buoyant sulfur-bearing plumes from fire
fountains could reach in the atmosphere, the chemical and microphysical evolution of sulfur in the atmo-
sphere, and the radiative effects of sulfate aerosols once they formed. To simulate the volcanic plumes, we
used a one-dimensional steady state model incorporating turbulent entrainment. This relatively simple
approach is justified based on extensive previous comparisons with observations and laboratory experiments
(see discussion in the supporting information). Our sulfur aerosol microphysics model is sectional (82 bins
total) and incorporates particle growth, coagulation, sedimentation, and mixing. Sulfate aerosol radiative
forcing was calculated using Mie theory and a one-dimensional radiative-convective correlated-k model
[Wordsworth et al., 2010; Wordsworth et al., 2013]. We also used this model to provide atmospheric
temperature-pressure profiles as input to the volcanic plume model. A complete description of our modeling
approach is given in the supporting information.

4. Results

First, we investigated the dependence of the maximum thermal volcanic plume height on the strength of an
individual Franklin LIP eruption and on the background climate. Our modeling indicates that plume height is
a strong function of volume eruption rate, with eruption rates of 104–105m3/s leading to plume heights
greater than the present-day tropical tropopause (~12 km) under Neoproterozoic atmospheric conditions
(Figure 2). We estimate these rates to be representative of the peak values produced during eruptions
associated with the Franklin LIP (see supporting information). Furthermore, our climate modeling shows that
tropopause height is a strong function of surface temperature (Figure 2a). This is because a warmer surface
injects more water vapor into the atmosphere, reducing the lapse rate. Hence, very warm climates can
“shield” the Earth from stratospheric aerosol injection by even the largest volcanic plumes [see also Glaze
et al., 2017]. Conversely, a cool background climate in the Neoproterozoic would have made it a particularly
dangerous time for a sequence of large basaltic eruptions to occur.
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Our microphysical model converts SO2 and H2S gas to H2SO4 aerosols on a time scale of 30–40 days. Once
formed, the aerosols remain in the stratosphere for 1–2 years, with the aerosol loading peaking in the first
3–6months, in agreement with observations of the 1991 Pinatubo eruption (see the supporting information).
We find that the radiative forcing caused by episodic injections of SO2 into the equatorial stratosphere
increases with the quantity of SO2 injected (Figure 3a), but the increase is sublinear due to particle coagula-
tion, which increases mean particle size and sedimentation rate for large eruptions [Pinto et al., 1989]. For a
single eruption, mean global forcing in the following year increases from !2.7W/m2 given 20Mt SO2 injec-
tion (cf. Pinatubo [McCormick et al., 1995]) to!12W/m2 for 500Mt SO2 (sensitivity to parameters described in
the supporting information). Estimating the rate at which sulfur was released from the Franklin LIP on a
decadal time scale is challenging, but 500Mt/yr is similar to estimates of SO2 release rate from more recent
LIPs [Self et al., 2014]. For comparison, the radiative forcing due to CO2 doubling on the present-day Earth is
around 3.7W/m2 [Myhre et al., 1998].

The eruption sequence of fissure eruptions associated with a LIP is poorly constrained. The best historical ana-
log is the 1783–1784 Laki fissure eruption in Iceland, which emitted ~122Mt SO2 over 8months with ~10
pulses that produced eruptive columns extending 9–13 km [Thordarson and Self, 2003]. However, many larger
flow fields have been identified in the geological record, which require longer total durations [Self et al.,
2014]. If these eruptions had higher magma output rates than Laki, different types of lava would have been
produced. For example, using peak output rates from Hawaii and Laki, Thordarson and Self [1998] estimated
that the 1300 km3 Roza flow field of the Columbia River Basalt Group formed in ~10–20 years. Larger flows,
such as those associated with the Deccan and Siberian Traps, may have lasted an order of magnitude longer
[Self et al., 2014] and had multiple eruptive centers. Nonetheless, because a robust eruption time series for a
multiyear fissure eruption does not exist, particularly for the sulfur release from an fissure eruption through a
sulfur-rich basin, we model the radiative effect of pulsed yearly equatorial volcanic eruptions under
Neoproterozoic conditions assuming 20, 100, and 500Mt of SO2 injection to the stratosphere (Figure 3a).
This covers the range of SO2 emissions from the historical Pinatubo and Laki eruptions over longer time per-
iods and also explores the larger SO2 concentrations estimated for the Franklin LIP.

The ability of volcanic aerosols to force a Snowball transition depends on both the starting climate state and
on the rate at which the upper layers of the tropical ocean can cool. Based on radiative-convective modeling,
we estimate that a!10W/m2 global mean aerosol radiative forcing would be sufficient to cause runaway gla-
ciation for CO2 levels of 3000 ppm (Figure 3b). These CO2 levels yield approximately present-day global mean
temperatures in our model given the fainter Neoproterozoic Sun. For lower background CO2 levels, as might

Figure 2. (a) Equilibrium atmospheric temperature profiles produced from the radiative-convective climatemodel for vary-
ing CO2 concentrations under Neoproterozoic conditions. The black, red, green, and blue lines correspond to simulations
where the background CO2 levels were 30, 300, 3000, and 30,000 ppm, respectively. (b) Maximum Franklin LIP plume
height as a function of volume eruption rate. In both panels, asterisks indicate tropopause height, defined as where the
lapse rate first drops below 2 K/km. The grey box brackets the maximum plausible volume eruption rate during formation
of the Franklin LIP (see the supporting information).
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be expected in a cool background cli-
mate, a Snowball transition could have
been caused by a correspondingly lower
radiative forcing. A simple calculation
assuming an ocean mixing layer depth
of 50m yields a time scale of order 3 years
to drive equatorial sea surface tempera-
tures to the freezing point of water and
commence a Snowball transition (see
the supporting information). Hence, a
sequence of large, sulfur-rich eruptions
of the type shown in Figure 3a may have
been sufficient to drive a runaway ice-
albedo event.

Estimates of the Snowball cooling time
scale from present-day conditions using
general circulation models coupled to a
dynamic ocean yield longer time scales
(decades to several hundred years,
depending on the initial climate state),
due to the enhanced vertical ocean mix-
ing driven by surface cooling in those
models [Voigt et al., 2011]. Many aspects
of mixing in the present-day ocean
remain poorly captured by numerical
models [Wunsch and Ferrari, 2004], so
the extrapolation to the Snowball regime
is challenging. Nonetheless, if these esti-
mates are robust, they suggest that the
climate state before the Franklin LIP
erupted would have needed to be colder
than that of present-day Earth to allow
sulfate aerosol forcing to drive a transi-
tion. They also suggest that another
reason the 14.98Ma Roza flow failed to
initiate a Snowball was because it
erupted during the Miocene climatic
optimum, when higher temperatures
would have required a significantly longer
time scale to freeze the surface ocean.

5. Discussion

If the Franklin LIP caused a Snowball Earth, then why are other LIPs not also associated with Snowball Earth
events? The Siberian Traps, which erupted around 250Ma at the end of the Permian, are similar in size to the
Franklin LIP, but instead of cooling, they appear to be associated with warming and extinction [Ganino and
Arndt, 2009]. Another LIP, the Central Atlantic Magmatic Province (CAMP), may have caused temporary cool-
ing followed by warming [Schoene et al., 2010]. The different outcomes are likely related to several factors: the
background climate conditions, changes in background planetary albedo with different paleogeography, the
latitude of the eruptions, the composition of the country rock that the LIPs were emplaced into (a sulfate-rich
basin, coal deposits, and an ancient mountain belt for the Franklin, Siberian Traps, and CAMP, respectively),
and timing of SO2 injection relative to the cumulative release of gases such as CO2. Although Neoproterozoic
paleogeography likely favored a cool climate [Li et al., 2013; Marshall et al., 1988], the Siberian Traps and
CAMP erupted during the ice-free Late Permian and Late Triassic, respectively, when warm conditions

Figure 3. The effect of volcanic sulfate aerosol emission on global
climate. (a) Equatorial radiative forcing due to yearly equatorial
volcanic eruptions under Neoproterozoic conditions. The black, red,
and green lines show simulations assuming 20, 100, and 500Mt of
SO2 injection to the stratosphere. Annual global mean forcings are
also displayed. (b) Bifurcation diagram of global mean temperature
versus radiative forcing defined as the difference between outgoing
longwave radiation and absorbed solar radiation. The dashed lines are
unstable states. Starting from a mean surface temperature close to
present day (red star), a negative radiative forcing of <!10W/m2 is
sufficient to push the Neoproterozoic Earth (green line) into a
Snowball state (blue star). Starting from a colder initial state, the
required radiative forcing is lower.
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extended to Earth’s polar regions [Taylor et al., 1992]. Consequently, there would have been a higher tropo-
pause that would have prevented stratospheric aerosol injection by all but the most powerful volcanic erup-
tions (Figure 2). Moreover, the Siberian Traps erupted at high latitude, whereas the CAMP and Franklin LIP
erupted at equatorial latitudes [Denyszyn et al., 2009b]. Consequently, albedo changes associated with the
Siberian Traps would have primarily affected mid-to-high latitudes in one hemisphere, whereas the CAMP
and Franklin LIP would havemaximized albedo at low latitude, where solar forcing is highest. Because aerosol
radiative forcing is most negative when surface albedo is low, and a high-latitude eruption in a cold climate
occurs over snow or sea ice, an equatorial eruption is far more effective at forcing a Snowball transition than a
high latitude one (see the supporting information). Deeper in Earth’s past, in the Archean and Proterozoic, a
warmer climate caused by elevated levels of CO2 or other greenhouse gases [e.g., Feulner, 2012;Wordsworth
and Pierrehumbert, 2013b] may have elevated the tropopause sufficiently to shield the Earth continuously
from significant stratospheric sulfate aerosol injection.

The geological record preserves evidence for two Cryogenian glaciations, the Sturtian and the Marinoan.
Although there is not evidence for a LIP during the onset of the Marinoan glaciation, this may be a matter
of preservation. The low-latitude rifting of Rodinia continued throughout the Neoproterozoic, and it is likely
that this was associated with additional LIPs. Geochronological constraints suggest that the Sturtian glacia-
tion lasted ~58Myr and that the nonglacial interlude before the Marinoan started was short, between 8.6
and 19.4Myr [Rooney et al., 2014]. If planetary weatherability remained high during the Cryogenian due to
continued low-latitude paleogeography and recently emplaced continental flood basalt provinces [Cox
et al., 2016], transport-limited weathering in the aftermath of the Sturtian glaciation may have returned
the Earth on a 10Myr time scale to a climate state sensitive to further short-term perturbations in the
planetary albedo [Mills et al., 2011]. After the Marinoan glaciation, the removal of a basaltic carapace
and drift of continents to higher latitudes [Li et al., 2013] likely reduced global weatherability and
climate sensitivity.

6. Conclusion

Based on a combination of geological evidence and atmospheric modeling, we have proposed that the prox-
imal trigger for the Sturtian Snowball Earth was a sudden increase in planetary albedo caused by the emission
of sulfate aerosols from basaltic volcanism. Further tests of our hypothesis will be possible via tighter con-
straints on the geochronology of the Sturtian glaciation and the Franklin LIP, and better estimates of sulfur
release with melt inclusion studies along with three-dimensional coupled ocean-atmosphere modeling of
the climate effect of stratospheric aerosol emissions. Mercury anomalies have been observed in sedimentary
records that span the Permian-Triassic and Triassic-Jurassic boundaries and have been attributed to the
Siberian Traps and CAMP, respectively [Thibodeau and Bergquist, 2017, and references therein]. Our model
predicts that similar mercury signals will be present in sedimentary successions deposited during onset of
the Sturtian glaciation.

Our proposed scenario for initiation of the Sturtian has several important implications beyond the
Neoproterozoic. In the Phanerozoic, the correlation of LIPs and meteorite impacts with both glaciations
and mass extinction events has long suggested a causal link. However, our results imply that the timing
and location of major volcanic and impact events may matter as much as, or more than, their overall magni-
tude. For exoplanets, our results indicate that volcanically active planets may be much more vulnerable to
Snowball transitions than traditional habitable zone ideas based on the carbonate-silicate cycle [Kasting
et al., 1993] would suggest. Finally, if the largest known glaciation event in Earth’s history was indeed trig-
gered by stratospheric sulfate aerosols, this should give some caution to similar geo-engineering strategies
proposed recently to decrease or eliminate anthropogenic climate change [Rasch et al., 2008].
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