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Abstract

This thesis describes theoretical and experimental investigations of planetary-scale turbulence and
jet formation.

In the first section, the interaction between zonal jets and planetary waves is described using
techniques adapted from quantum mechanics. The planetary wavefield is treated as a ensemble of
wavepackets, and the quantum mechanical Wigner function is used to construct an equation for
the evolution of wavepacket density in phase space that includes all effects of the mean flow on the
waves. Analytical arguments, combined with a simple numerical model, are then used to give an
intuitive picture of jet formation as a positive feedback process in which a jet ‘feeds’ on wavepackets
as it grows. Furthermore, it is shown that the phase space approach also allows a very intuitive
explanation of east-west jet asymmetry in terms of wavepacket motion.

In the second section, a differentially heated rotating annulus experiment is used to study planetary-
scale turbulence and jet formation in the laboratory. The cases of both flat and sloping vertical
boundaries were investigated; in the former, it was found that the flow evolved into a statistically
steady state typically consisting of a large-scale coherent structure plus a more rapidly varying eddy
field. In the latter case, the sloping boundaries caused turbulent eddies to behave like planetary
waves at large scales, and eddy interaction with the zonal flow then led to the formation of several
alternating jets at mid-depth. The jets in the experiment did not scale with the Rhines length, and
spectral analysis of the flow indicated a distinct separation between jets and eddies in wavenumber
space, with direct energy transfer occuring nonlocally between them. This result suggests that the
traditional turbulent cascade picture of zonal jet formation may be an inappropriate one in the
geophysically important case of large-scale flows forced by differential solar heating.

Additional experiments were performed with an insulating barrier that blocked flow in the az-
imuthal direction. At low rotation rates, a large gyre was observed at mid-depth in the annulus,
with an intense ‘southward’ boundary current on the left side of the barrier. At high rotation rates,
the flow became turbulent, and the gyre split into several zonal jets away from the barrier. These
experiments may have implications for physical oceanography, as recent observations and simula-
tions of the Earth’s deep oceans have indicated that zonal jet formation may also be occurring
there.

In the final section, the numerical model of the first section is extended, in order to produce a simple
reduced model of the jet formation observed in the unblocked experiments. The model results were
qualitatively very similar to the experiment, although quantitative differences existed. The reasons
for the discrepancies are discussed, along with suggestions for future research and implications for
the modelling of real planetary-scale fluids. In particular, it is noted that if nonlocal energy transfer
dominates in real geophysical fluids such as the Earth’s atmosphere, it may be possible to construct
faster general circulation models that parameterise the effects of eddy-eddy interactions.
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Chapter 1

Introduction

Turbulence is the last great unsolved problem of classical physics.

This is unfortunate, as the most common state of fluid systems in the Universe is a turbulent one.
From the motion of stellar interiors to the large-scale structure of the cosmos; from oceanic eddies
that transport heat, plankton and human pollution to the flow of blood in our own bodies — highly
nonlinear fluid motion is everywhere. If we have until now failed to understand it completely, it is
certainly not through want of examples to observe in nature.

This thesis is concerned only with a very specialised case: that of turbulence in planetary atmo-
spheres and oceans on the largest scales. Specialised as it is, planetary-scale fluid dynamics is a
subject of great practical importance to all of us, as it determines both the day-to-day weather
and the long term climate of Earth. It is also fascinating from a fundamental point of view. The
rotation of planets combined with their spherical geometry leads their atmospheres and oceans to
behave in unique and frequently counterintuitive ways. Indeed, after three years of DPhil research
I am now strongly of the belief that traditional views of turbulence are, at best, of limited value in
understanding the way planetary-scale fluids behave.

The central focus of the work presented here is zonal jet formation; the physical process by which a
turbulent flow organises itself into alternating bands of high east-west velocity, separated by regions
of intense shear and vortex formation. The most famous example of zonal jets in nature are the
belts and zones of the planet Jupiter, as shown in Figure 1.1. However, jet formation also occurs
in a wide variety of other situations in physics.

In this introductory chapter, we explore just why planetary-scale turbulence and jets are so impor-
tant and challenging to study. The different situations in nature where jet formation occurs are
described and previous work on the subject is briefly summarised (some of it is reviewed in greater
detail in Chapter 2). At the end of the chapter, the central aims of this study are stated, and an
outline of the entire thesis is given.

1.1 Turbulence and jet formation in nature

The most famous examples of jets in nature, the colourful belts and zones of Jupiter, have been
observed more or less continuously since the introduction of the first telescopes. Perhaps the very
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Figure 1.1: Some examples of zonal jets in nature. a) A schematic of the global circulation of Earth’s
atmosphere (reproduced from The Atmosphere, Lutgens and Tarbuck, 2001 ). b) A rectangular pro-
jection of Jupiter’s atmosphere in the visible spectrum. The zonal velocity profile as measured by the
NASA Voyager probe is superimposed in black.

first human to observe Jupiter’s jets was the Italian astronomer Giovanni Cassini, who is believed
to have noted the planet’s unusual striped appearance as early as the 1660s [18].

The birth of interplanetary exploration in the 1960s revolutionised observation of the Jovian at-
mosphere. The hugely successful Voyager and Galileo missions, in particular, allowed quantitative
measurements of jet and vortex velocities for the first time, and theoretical understanding of the
planet’s rich atmospheric dynamics has benefited immensely from the wealth of data that these
probes returned [6].

Although less photogenic in the visible spectrum due to their differing atmospheric chemistry, the
other gas giant planets also feature persistent east-west jets. Saturn, in particular, has almost as
many jets as Jupiter, along with many other exotic fluid dynamical phenomena including polar
hotspots and a hexagonal vortex chain in the northern hemisphere [23][66]. Recent observations of
the cloud layers of both Jupiter and Saturn by the NASA-ESA Cassini probe have also confirmed
an idea long predicted by theorists: the jets are at least partially maintained by nonlinear eddy
fluxes of momentum [22][59]. Rather than acting as a drag on the jets, the small-scale eddies and
vortices in the atmosphere actively feed them.

Turbulent jet formation also occurs in the atmosphere of Earth (see Figure 1.1). Although Earth’s
subtropical jet stream exists mainly because of the effect of the Coriolis pseudoforce on the upper
branch of the Hadley cell, the mid-latitude and polar jets are mostly maintained by nonlinear eddy
forcing, just as in the gas giant planets [34]. There are some differences between the two cases,
of course. Perhaps most important is the nature of the forcing: while convection from the deep
interior is believed to be the main driver of the large-scale circulation of Jovian atmospheres, it
is baroclinic instability, caused ultimately by the variation in solar heating with latitude, which
dominates in the terrestrial case.

The jets of Earth’s atmosphere and those of the gas giant planets are equally fascinating to the
physicist. Due to the fundamental role that global jets play in Earth’s climate, however, their prac-
tical importance is considerably greater. As well as affecting global chemistry by controlling the way
trace chemicals are transported, they strongly influence (and are influenced by) the development
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we employ here is a run from 1950 to 2003 using 6 hourly
forcing from the NCEP/NCAR reanalysis. The 50 year spin-
up phase of this experiment was used in the analysis of
Maximenko et al. [2005]. We therefore can examine the
robustness of our results in respect to the imposed dissipa-
tion and forcing.

3. Results

[8] The zonal component of velocity, u, from the clima-
tological run of the POP model, at 400 m depth and
averaged over 3 years is shown in Figure 1. The striking
thing about this figure is the zonal coherence of structures
that have a relatively fine meridional scale and which
appear to dominate the time-averaged flow. Such structures
are a robust feature of ocean models with relatively high
resolution and low imposed dissipation [Galperin et al.,
2004; Nakano and Hasumi, 2005]. Here we find the
properties of the fine scale structure, as analyzed below,
are not sensitive to the form or magnitude of the imposed
dissipation in the model. For the case shown the coefficients
for the biharmonic momentum and tracer dissipation are set
to be 2.7 and 0.9 ! 10"9 m4 s"1, respectively. Varying these
by a factor of 3, including a harmonic parameterization for
tracer transport suggested by Gent and McWilliams [1990]
(GM), or smoothing the topography, does not unduly affect
the amplitude or meridional scales of the flow structures
(see below). (We have not investigated how large the
dissipation has to be before there is a significant impact.)
[9] Alternating jet-like structures are clearly seen, most

notably between 30–55!N and in the tropics. The model
Antarctic Circumpolar Current (ACC) also has a marked
multiple-jet character which is masked by the color satura-
tion in Figure 1. These regions also have high levels of eddy
activity. We will analyze the structure of jets in these three
regions in more detail. Jets are also associated with some
islands such as the SW sub-tropical Pacific [cf. Webb, 2000]
and the Hawaiian Lee Counter Current [cf. Xie et al., 2001].
[10] The vertical structure of the jets is shown in Figure 2.

There is a jet-like structure throughout the entire depth of
the ocean, but the structure is markedly different in the
tropics compared with that further north. Between 30–50!N
the jets are coherent throughout the entire depth of the
ocean, with a surface intensification. (The most prominent

jet is the extension of the Kuroshio at around 35!N.) Close
to the equator, between 10!S–10!N, the vertical coherency
of individual jets is much reduced.
[11] The temporal coherency of the jets is shown in

Figure 3 which shows a two-year running average of u at
400 m depth from OFES forced with NCEP/NCAR reanal-
ysis, and averaged between 140–150!W. Poleward of 30!N
and S there are features that are persistent in time. Between
30!N–55!N we see individual jets are persistent with time
with their latitudinal position slowly varying with time.
Jets merge and bifurcate on a timescale of O(3–5) years,
with some jets persisting for much longer. The temporal
evolution of the jets is very similar to that found by Panetta
[1993] for forced geostrophic turbulence on a b-plane. In the
ACC at this longitude the position of the jets is constrained
by topography.
[12] In the tropics at any particular time the two-year

averaged flow does show a multiple jet structure. However
the persistence of individual jets away from the equator is
very variable. In the 1960’s we see jets persisting for most
of the decade, in particular between 5–20!N. In the 1980’s
there is very little persistence in this region.
[13] The flow in the sub-tropics, between 20–30!N and

S, shows a very different behavior. Here the flow is
dominated by features propagating toward the equator with
a phase speed of approximately 0.045 m s"1 and a period of
approximately 4 years (the two-year averaging partially
obscures these features in Figure 3). The zonal and merid-
ional wavelengths are approximately 4000 km and 500 km

Figure 1. Zonal component of velocity at 400 m depth
averaged over 3 years from the climatological run of the
POP model. Color saturates at "0.06 m s"1 (blue) and
0.06 m s"1 (red).

Figure 2. Zonal component of velocity along 180!E
averaged over 3 years from the climatological run of the
POP model as a function of latitude and depth. Model run
the same as in Figure 1. Color saturates at "0.06 m s"1

(blue) and 0.08 m s"1 (red). Zero contour given by black
line.

Figure 3. Two year running average of the zonal
component of velocity at 400m depth averaged between
140–150!W, as a function of latitude and time, from OFES.
Color saturates at "0.2 m s"1 (blue) and 0.2 m s"1 (red).
Zero contour given by black line.

L03605 RICHARDS ET AL.: JETS IN THE PACIFIC L03605
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Figure 1.2: Contour plot of zonal (east-west) velocity from a high-resolution numerical simulation of
Earth’s Pacific ocean. Image reproduced with permission from Richards et al. [40].

of storms and local weather systems at different latitudes.

Recently, there has been increasing evidence that zonal jets are even more common in planetary-
scale fluid systems than was previously thought. In particular, some new studies have hinted that an
analogous process to the jet formation seen in atmospheres may also be occurring in Earth’s oceans
[40][55]. Figure 1.2 shows a contour plot of zonal velocity from a recent high-resolution numerical
simulation reported in Richards et al. [40]. In their model, the authors found evidence of east-west
bands of zonal velocity in the Pacific ocean that extended deep into the abyssal region. However,
the jets produced were only visible after an intermediate time-average. On longer timescales, they
were observed to slowly merge and bifurcate.

At the time of writing, oceanic zonal jet formation is a open area of research, and it may well
be some time before the existence of persistent jets can be unambiguously verified or denied. In
Chapter 7, some experimental results are presented which demonstrate that, from a fundamental
perspective, it is at least possible for ocean basin jet formation to occur due to the same basic
phenomenon responsible for jets in planetary atmospheres.

Finally, jet formation also occurs in tokomak plasmas [32]. Due to a fascinating mathematical
analogy between planetary waves (see section 2.1.1) and plasma drift waves, the rotating fluid and
plasma processes are dynamically extremely similar. This has lead to an interesting transfer of
ideas between the two fields: some of the papers referenced in Chapter 3, for example, were written
by plasma physicists on the drift wave – zonal flow problem.

1.2 Previous theoretical and numerical work

Many decades of intensive research has been put into understanding how turbulent fluids behave.
Some of the world’s most famous physicists have worked on the problem; Lev Landau, for example,
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provided some early ideas that, although ultimately incorrect, provided much inspiration for future
researchers.

The most successful attempt at a theory of turbulence to date came from the brilliant Russian
mathematician Andrey Kolmogorov, in 1941 [33]. Kolmogorov used scaling and spectral analysis
to make concrete predictions about idealised three-dimensional turbulent flow that hold extremely
well in many cases. Despite his successes, however, it has never been possible to derive his results
from the underlying equations of fluid dynamics. In Chapter 2, the Kolmogorov theory is briefly
reviewed, along with similar heuristic approaches to understanding two-dimensional turbulence.

Planetary-scale turbulence is an even more complex and challenging subject. This is partly because
in real atmospheres there are usually a variety of forcing and damping mechanisms present. More
fundamentally, however, the rotation and spherical geometry of planets means that their large-scale
flows are usually strongly anisotropic. As most classical turbulence ideas are built on isotropic
assumptions, this makes their relevance of dubious validity, although they are often still used in
the absence of other approaches.

There have been some important theoretical contributions to the planetary-scale turbulence prob-
lem, although all of them are partly heuristic. Peter Rhines, for example, laid out ideas on planetary
waves and turbulence in a 1975 paper that is widely regarded as having kick-started modern think-
ing on the jet formation problem [54]. Also important was the work of Rick Salmon in 1978,
who used statistical methods to make fairly robust predictions about the behaviour of planetary-
scale turbulence forced by baroclinic instability [57]. Both studies are reviewed, along with other
important work on the subject, in Chapter 2.

Given the difficulties associated with turbulence theory, however, it should be unsurprising that
extensive work has been put into other approaches to the problem. In particular, many researchers
have turned to numerical simulations of various idealised fluid systems. Starting with the early
studies of Wiliams [68], there have now been many numerical investigations into the dynamics of
turbulent jets. The most important and relevant of these are also reviewed in Chapter 2.

1.3 Laboratory models of jets and turbulence

Numerical simulations are extremely powerful tools in physics, and it is likely that as computing
power increases, their importance can only grow. However, they do have disadvantages. They
usually require parameterisations that can make their output difficult to interpret or even physically
incorrect. The modelling of turbulent fluids, in particular, is extremely challenging, as the strong
nonlinearity of such flows demands extremely high spatial and temporal model resolution.

Laboratory models of atmospheric and oceanic processes are now well-established as an alternative
approach to the problem. They have unique advantages; for one, they employ real fluids, and
hence do not suffer from discretisation errors, or the physically dubious ‘numerical dissipation’ that
plagues computer models of turbulence.

In a very real sense, however, laboratory analogues should be seen as simply ‘computer simulations
by other means’, as their aims are essentially the same; to reproduce the observed phenomena in
settings that can be carefully controlled. Both methods have an essential role in planetary physics,
as they allow one to apply the scientific method to a problem with a level of rigour that is never
possible in observational work.
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Figure 1.3: Schematic of the analogy between a planetary atmosphere at midlatitudes, and the differ-
entially heated rotating annulus experiment.

Historically, attempts to simulate planetary atmospheric circulation in the laboratory date back as
far as the work of Vettin in the 19th century, who placed ice in the centre of rotating dishes of air,
with the aim of simulating the cooling effects caused by polar icecaps [67]. The first systematic
investigation of laboratory models began with the independent work of Hide and Fultz in the 1950s
[26][56]. They studied an experimental system, the differentially heated rotating annulus, which
has proved of enduring relevance in the study of planetary atmospheres.

The idea behind the experiment, as shown schematically in Figure 1.3, is to reproduce the dif-
ferential heating of a mid-latitude air mass in a rotating frame. Initially, the combined effects of
differential heating and the Coriolis pseudoforce cause a vertically sheared zonal (‘east-west’) wind
to develop. When the rotation rate of the turntable is increased above a certain critical value, this
flow becomes hydrodynamically unstable, and exhibits a wide range of behaviour depending on the
system parameters. Steady waves give way to aperiodic and eventually turbulent fluid behaviour
as the system is pushed further away from the stable regime. The experiment is justifiably famous
in the field of chaos theory, as it is believed to have inspired Lorenz to write his seminal paper
‘Deterministic nonperiodic flow’ in the 1960s [37].

To reproduce jet formation in the laboratory, it is essential to account for one additional effect —
the variation of Coriolis effect with latitude or planetary β-effect. One way this can be done is by
placing sloping top and bottom boundaries in the annulus1.

There have been several laboratory studies to date that attempted to simulate planetary turbulence
and jet formation. Hide and Mason [29] studied the effects of sloping boundaries in some of their
later experiments, but did not investigate regions of parameter space where multiple jet formation
occurred. Other early studies include the work of Busse [11], who simulated deep planetary con-
vection in rapidly rotating shells, with the centrifugal pseudoforce playing the role of a ‘reversed’
gravitational field.

A more recent experiment by Condie and Rhines [13] involved a heated rotating dish with a curved
1In heat-driven flows, the analogy between the β-effect and sloping topography is slightly complicated by stratifi-

cation effects. This issue is discussed further in Chapters 2 and 6.
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lower surface [13]. In that work, the development of a meandering surface jet was observed via
surface aluminium streak imaging, and it was suggested that its formation could be explained purely
through a conservation of angular momentum argument. However, no velocity field information
was derived for the experiment, and therefore the contributions of nonlinear eddy fluxes to the
overall momentum balance could not be computed.

Bastin and Read [7] used ohmic heating to internally heat a rotating fluid, with the aim of qual-
itatively reproducing the radiative forcing of the upper atmospheres of gas giant planets. They
observed some evidence of jet formation with both negative and positive sloping boundaries, and
noted that the jet structure could not be easily predicted from the form of the background thermal
forcing.

In 2004, Read, Yamazaki et al., reported an experiment performed in a 13 m diameter annulus
with convective forcing provided by spraying salt water onto fresh [51][52]. Multiple jets were
observed in the fluid that were instantaneously barotropically unstable, and it was found that
zonal acceleration and Reynolds stress were correlated, suggesting that barotropic eddies were the
main driving mechanism for the jet.

Finally, a second experiment was carried out very recently at the same facility by a number of
researchers (including the author of this thesis). This time, the sloping lower boundary of the
tank was heated, in an attempt to more directly simulate the gas giant jet convection process. Jet
formation was observed at high rotation rates, and dye visualisation of small scales revealed that
the formation of convective plumes (similar to ‘dust-devils’) was extremely spatially intermittent.
At the time of writing, however, analysis of the results is still at an early stage.

1.4 Thesis aims and overview

The aim of this DPhil project was to increase our understanding of the turbulent jet formation
process. To this end, both theoretical and experimental research was performed.

The aim of the experimental research was to systematically study turbulence and jet formation
in the ‘classical’ differentially heated rotating annulus. Although the setup of the experiment
was standard, the dimensions of the apparatus allowed the investigation of a turbulent region of
parameter space than has never before been studied in detail. To aid the study of this region,
a new data acquisition system was also implemented, allowing much more detailed velocity field
information to be derived than was previously possible.

The combination of these two improvements meant that a much greater focus on the dynamics of
jet formation was possible than in previous investigations. To focus the analysis of the experimental
results, several specific questions were posed. They are:

• Do multiple barotropic jets develop in the experimental system?

• If so, are the jets dynamically stable?

• How do they interact with the turbulent eddies?

• Is a turbulent cascade of energy from small to large scales occurring?

• If not, can wave-mean flow theory be used to describe the jet formation process?
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The final question posed was

• Do jets form in the annulus when a vertical flow barrier is also present?

This last one is somewhat removed from the main topic of the thesis, but it is interesting nonetheless,
as it relates to the real-world question mentioned in Section 1.1:

• Are the zonal jets found in recent high resolution ocean simulations dynamically related to
those seen in planetary atmospheres?

This provided the motivation for the ocean wall experiments of Chapter 7.

The theoretical work described here had two main aims. The first was to develop new ways of
describing general interactions between zonal jets and planetary waves, in order to gain a deeper
understanding of the dynamics. The motivation for this work is explained further in Chapter 2,
where previous theoretical papers most relevant to the new approach are also reviewed. The second,
more ambitious goal was to develop a simplified numerical model that could predict the results of
the experiments. The guiding principle was to reduce the equations describing jet formation to as
simple a form as possible, without cutting out the parts that were essential to the process.

The structure of this thesis is as follows. In Chapter 2, basic equations and concepts are reviewed,
and the properties of some idealised turbulent flows are described. In Chapters 3 and 4, the Wigner
function approach is introduced. Through the use of ideas from quantum mechanics, a combined
real and spectral space view of the dynamics is constructed, and used to explain jet formation in a
simple test case.

In Chapter 5, the setup of the rotating annulus experiment is described. In Chapter 6, results from
the experiment are presented, with particular attention devoted to the sloping boundary cases in
which multiple jet formation occurred. The ocean wall experiments, which were conducted with a
flow barrier in the annulus, are described in Chapter 7.

In Chapter 8, the methods of Chapters 3 and 4 are used to make an extremely simple model of the
unblocked sloping boundary experiments. The model setup and approximations are described, and
then simulations are presented with the same general parameters as an experiment in which multiple
jet formation occurred. The successes of the model in reproducing the observed experimental
results, along with its weaknesses, are then discussed in detail. Finally, in Chapter 9, we discuss
the success of the thesis in achieving the aims outlined here. Implications of the results are discussed,
and suggestions are made for possible future work that could extend the ideas presented.
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Chapter 2

Fundamental theory

In this chapter we introduce some basic theoretical concepts that will be needed throughout the
rest of the thesis. The fundamental equations of fluid dynamics are stated (not derived!), and cast
into a form that is most useful for describing planetary atmospheres and oceans. We then discuss
the general properties of turbulent flows in a few different cases, also reviewing some of the most
famous historical attempts to describe turbulence theoretically.

2.1 Fluid mechanics in a rotating frame

In the absence of forcing and damping, the local acceleration of any small portion of a fluid must
equal all the forces imposed upon it. In the absence of sources and sinks, the mass of any small
portion of a fluid is also conserved. These two fundamental principles are the basis of the Euler
equations for non-relativistic fluid dynamics

d2x
dt2

=
∂u
∂t

+ (u · ∇) u = −1
ρ
∇p+∇Φ (2.1)

∂ρ

∂t
+∇ · (uρ) = 0, (2.2)

where u is the (three-dimensional) velocity vector, ρ is density, p is pressure and Φ is a scalar
representing all conservative forces.

In a rotating coordinate frame, Coriolis and centrifugal correction terms must be added to the
equations of motion for any body. Furthermore, any real fluid will continually lose kinetic energy
due to viscous damping. Equation (2.1) is therefore generalised to the more useful and physically
realistic Navier-Stokes equation

∂u
∂t

+ (u · ∇) u + f × u = −1
ρ
∇p+∇Φ′ + ν∇2u. (2.3)

Here f = 2Ω, the Coriolis parameter, is twice the axial vector of planetary rotation rate and
Φ′ = Φ + Φc is the original conservative scalar term plus a contribution Φc due to the centrifugal
pseudoforce. The parameter ν is the viscosity of the fluid. When combined with an appropriate
equation of state and boundary conditions, equations (2.2) and (2.3) allow the evolution of a given
fluid to be described completely.

12



In the absence of forcing, viscosity and diabatic heating effects, there is another locally conserved
quantity in a fluid besides mass. This quantity is the potential vorticity, Π, defined as

Π =
(∇× u + f) · ∇η

ρ
(2.4)

in its most general form. The variable η = η(p, ρ) can be any locally conserved thermodynamic
scalar, such as entropy, or potential temperature in planetary atmospheric flows. Due to its dynam-
ical significance, potential vorticity is an immensely useful quantity in planetary fluid dynamics,
and frequent reference is made to it in this report.

The proof that Π is conserved is not a difficult one, and it is covered in detail in many texts (e.g.,
[44], [58]). As will be seen in the next section, in approximate planetary-scale fluid equations,
potential vorticity becomes an even more useful and important quantity.

2.1.1 Approximate equations for planetary-scale fluids

In practical terms, (2.3) is rarely useful for theoretical or numerical analyses of geophysical turbu-
lence. The chief reason for this is that it admits sound and inertia-gravity waves as solutions, both
of which are of much higher frequency and smaller scale than the slow, planet-wide motions we are
interested in.

To filter out the less interesting small-scale motion, it is necessary to bring in some extra physics. We
make three assumptions. The first is that the fluid is effectively incompressible. In an incompressible
fluid, (2.2) decouples into the two equations

∇ · u = 0, (∂t + u · ∇) ρ = Dρ = 0 (2.5)

and sound waves vanish entirely. Physically, this means that we are treating their propagation
speed as infinite when compared to that of the larger-scale fluid motion.

The second assumption made is that due to the planet’s gravitational pull, the fluid is strongly
stratified. In other words, it is close to a state of hydrostatic balance. If perfect hydrostatic balance
holds in a fluid, the vertical component of the Navier-Stokes equation (2.3) becomes replaced by
the simple relation

dp

dz
= ρ

dΦg

dz
= −ρg. (2.6)

The final assumption is that at large scales, the horizontal pressure gradient is approximately
balanced by the Coriolis pseuodoforce f × u. If this is the case then (assuming for simplicity that
Ω = (0, 0,Ω)) the two horizontal components of (2.3) become

(f × u)h = −1
ρ
∇hp (2.7)

A fluid in the state defined by (2.7) is said to be in geostrophic balance. Note that (2.7) implies
a very unintuitive result: the horizontal motion of fluid elements is perpendicular, not parallel, to
the force applied to them! Clearly, one must be very careful when applying previous assumptions
and prejudices to fluid motion in a rotating frame.

Neither (2.6) nor (2.7) involve time derivatives of any fields. In order to construct a reduced
dynamical equation, we need to examine the fluid behaviour when only small departures are allowed
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Figure 2.1: Schematic comparison of the real and approximate geometries of planetary fluid dynamics.
a) The true spherical geometry of a planet. Latitudinal black solid lines indicate region over which a
β-plane approximation might be expected to be valid. b) The experimental rotating annulus geometry.
Azimuthal and radial directions correspond to east-west and north-south respectively. c) The β-plane
channel geometry. Here, curvature disappears entirely, and the sinusoidal variation of Coriolis effect
with latitude is treated as approximately linear (shown schematically as a sloping bottom boundary
here).

from these two constraints. Before we do this, however, it is convenient to bring in one further
approximation — this time a geometrical one. The full spherical coordinate system covering the
entire planet is going to be replaced by a Cartesian one, valid over a certain latitude band. This
approximation is perhaps made clearer by the diagrams in Figure 2.1.

Although forcing the equations of motion into a Cartesian form like this may seem like a drastic
thing to do, it is more than paid for by the resulting increase in simplicity. Geometrical transforms
are a very common trick in planetary fluid dynamics research. In particular, they are also used to
interpret the results of rotating annulus experiments, such as the ones reported in Chapters 5-7 of
this thesis. Frequently there, we will refer to the radial and azimuthal directions as ‘north-south’
and ‘east-west’ respectively.

The Coriolis parameter, which in general depends on latitude in the form fz(λ) = 2Ω sinλ, will only
vary a little over the local latitude band. If we define a ‘local north-south coordinate’ y ≈ a(λ−λ0)
(and similarily an ‘east-west’ coordinate x ≈ a(θ − θ0)), a Taylor expansion yields

fz(y) = fz(0) + y

(
df

dy

)
y=0

+ . . . ≈ f0 + βy (2.8)

with f0 = 2Ω sinλ0 and the constant factor β = (2Ω cosλ0) /a. Naturally enough, (2.8) is called
the β-plane approximation. As will be seen later in this chapter, the constraints on planetary-scale
motion that result from it are fundamental to the jet formation process.

As was mentioned in Chapter 1, the effect of a linearly varying Coriolis parameter can be repro-
duced in the laboratory by the addition of sloping top and bottom boundaries to the rotating
annulus. If the flow in the annulus is barotropic (constant with height), there is a mathematical
isomorphism between the topographic and planetary β-effects. When added to differentially heated
experiments, such as the one discussed in this thesis, sloping boundaries no longer have a direct
quantitative equivalence to the β-effect. Qualitatively, however, their effects are very similar. The
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issue is discussed in more detail in Chapter 6, where wave frequencies are directly calculated from
experimental data and compared with theory.

Having constructed the Cartesian β-plane, we can now finish the derivation of the reduced planetary-
scale equations. To this end, we define the Rossby number

ε ≡ [(u · ∇) u]
[f × u]

=
U

f0L
, (2.9)

a ratio between nonlinear and Coriolis effects. If ε is small, a formal perturbation expansion can
be performed on the full dynamical equations (2.3), with dynamical fields like u expanded as

u = u0 + εu1 + . . . . (2.10)

At zeroth order, exact geostrophic balance as stated by (2.7) will apply. At first order truncation,
a closed set of equations for the zeroth and first order variables can be constructed, and the flow is
termed quasigeostrophic.

Departures from the hydrostatically balanced density profile ρ0(z) can be treated in a similar way,
via a linear expansion of the density ρ. In particular, the incompressible equation of continuity
(2.5) becomes

Dρ→ D0ρ1 + w1
dρ0

dz
= D0ρ1 −

ρ0(z0)
g

N2w1 = 0 (2.11)

N2 ≡ − g

ρ0(z0)
dρ0

dz
(2.12)

for the linear departure ρ1 from the static profile. The quantity N is the buoyancy frequency; it
is the characteristic oscillation rate of small fluid elements displaced vertically from their stably1

stratified location.

When these two expansions from geostrophic and hydrostatic balance are applied to (2.3), the
quasigeostrophic (QG) equations result

D0u0 − f0v1 − βyv0 = 0 (2.13)
D0v0 + f0u1 + βyu0 = 0 (2.14)

D0

(
−gρ1

ρ0

)
+N2w1 = 0 (2.15)

∇ · u1 = 0. (2.16)

In the above, D0 = ∂t + u0 · ∇ is the geostrophic advection operator, and u1 is logically termed the
ageostrophic velocity. Note that the derivation of equations (2.13)-(2.16) is carried out in far more
detail in planetary fluid dynamics textbooks (see for example [2]).

Simplified as they are, (2.13)-(2.16) still appear rather messy. Their elegance is best appreciated
by rewriting everything in terms of the quasigeostrophic potential vorticity, defined as

q ≡ ∂v0

∂x
− ∂u0

∂y
+

∂

∂z

(
f2

0

N2

∂ψ

∂z

)
+ f0 + βy

= ∇2
hψ +

∂

∂z

(
f2

0

N2

∂ψ

∂z

)
+ f0 + βy. (2.17)

1There are situations where N2 becomes negative, such as when a denser fluid region is above a lighter one.
Then, N will clearly be imaginary. In this case, displaced fluid elements may rise exponentially, the stratification is
unstable... and the QG approximation can no longer be valid.
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We use the lowercase symbol q to distinguish it from the more general potential vorticity Π defined
in (2.4). The quantity ψ is the geostrophic streamfunction, defined by

u0 =
(
−∂yψ
∂xψ

)
and

ρ1

ρ0(z0)
=
−f0

g

∂ψ

∂z
. (2.18)

By definition, in a steady, geostrophically balanced flow, fluid elements follow contour lines of ψ.

Just as Π is locally conserved in a general flow, q is conserved in a quasigeostrophic one. This fact
can be proved by writing ∂x(2.14) −∂y(2.13) and using incompressibility to arrive at

D0

(
∇2
hψ + f0 + βy

)
= f0

∂w1

∂z
, (2.19)

and then taking the vertical derivative of (2.15). With use of (2.18), the beautifully simple result2

D0q = 0 (2.20)

follows.

Although (2.20) and the more general equation DΠ = 0 appear very similar, (2.20) is in fact far
more useful. This is because an inversion relationship exists between q and ψ. Knowledge of either
of these scalar fields in a well-bounded domain allows us to derive the other, and hence to predict
the evolution of the entire quasigeostrophic fluid.

In the presence of forcing and damping, the right hand side of (2.20) is no longer zero. In a real
fluid, such as that in the rotating annulus experiment, non-conservative effects of some kind are
always important. They are also included in some of the reduced model simulations (Chapters 4
and Chapter 8). The most important damping in geophysical fluids is usually Ekman suction —
an effect whereby eddies and vortices cause vertical fluxes of fluid from boundary layers into the
interior, slowly reducing their strength as a result. It can be parameterised by a simple linear factor
in the quasigeostrophic equation (e.g., D0q = −κq). Damping and forcing processes are needed in
the description of statistically steady turbulent fluids, which we will come to later in this chapter.

From here, we drop the zero subscript on geostrophic velocities and operators when describing
quasigeostrophic processes; the context of the equations will always be made clear when necessary.
The h subscript is similarly dropped from vectors and operators when it is clear that we are working
in a two-dimensional horizontal system. Finally, this thesis makes much use of the elegant Jacobian
notation J [ψ, f ] ≡ u · ∇f for advection operators. In Cartesian coordinates, the Jacobian can be
written explicitly as J [ψ, f ] = ∂xψ∂yf − ∂yψ∂xf , due to the definition of streamfunction (2.18).

Two-layer quasigeostrophy

Conceptually, it is often very useful to make a further simplification known as the two-layer ap-
proximation, in which the potential vorticity equation becomes

∂tqi + J [ψi, qi] = 0 i = 1, 2 (2.21)
2In the derivation of the QGPV equation, the identities (∂xu0) · ∇v0 = 0, (∂yu0) · ∇u0 = 0 and

(∂zu0) · ∇((f2
0 /N

2)∂zψ) = 0, all of which can be proved with use of the streamfunction definition (2.18), are ex-
tremely helpful.
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Figure 2.2: Schematic representation of the barotropic (left) and baroclinic (right) modes in the
two-layer quasigeostrophic model.

with

q1 = ∇2ψ1 − k2
D(ψ1 − ψ2) + f0 + βy

q2 = ∇2ψ2 − k2
D(ψ2 − ψ1) + f0 + βy. (2.22)

This is physically equivalent to replacing the three-dimensional, stratified fluid described by (2.20)
with two discrete layers of different densities. The parameter kD is the internal deformation
wavenumber; it tells us the relative importance of rotational and buoyancy effects. The defor-
mation radius, LD = πk−1

D , is often a rough guide to the characteristic size of eddies that form in
a turbulent quasigeostrophic fluid. We will discuss this issue further in Section 2.2.2.

We have assumed that rigid boundaries exist on the top and bottom of the fluid. This excludes the
possibility of an external deformation radius appearing in (2.21) due to a movable interface (e.g.,
water → air) at the top or bottom layer. In both the theoretical and experimental chapters of this
thesis, the systems studied always have rigid top and bottom boundaries of this kind.

With only two levels, the vertical modal decomposition of (2.21) is extremely easy. We define
barotropic and baroclinic streamfunction and potential vorticity via level sums and differences,

ψ =
1
2

(ψ1 + ψ2) (2.23)

τ =
1
2

(ψ1 − ψ2) (2.24)

and

q =
1
2

(q1 + q2) = ∇2ψ + f0 + βy (2.25)

σ =
1
2

(q1 − q2) = ∇2τ − k2
Dτ (2.26)

respectively. In the two-layer system, therefore, the terms ‘barotropic’ and ‘baroclinic’ have simple
interpretations as the vertical average and the vertical shear3, as illustrated in Figure 2.2.

The dynamical equations for (2.25) and (2.26), in the absence of forcing and damping, can be
written as

∂tq +
1
2

(J [ψ1, q1] + J [ψ2, q2]) = 0 (2.27)

∂tσ +
1
2

(J [ψ1, q1]− J [ψ2, q2]) = 0. (2.28)

3This can be contrasted with the more fundamental and general definition of a barotropic fluid as one in which
pressure is a function of density only, p = p(ρ).
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In terms of purely modal variables, (2.27) and (2.28) become

∂tq + J [ψ, q] + J [τ, σ] = 0 (2.29)
∂tσ + J [ψ, σ] + J [τ, q] = 0. (2.30)

In Chapter 8, equations (2.27) and (2.28) are used to construct a reduced model of the rotating
annulus experiment.

Planetary waves

Before we move on to the discussion of highly nonlinear, turbulent fluid behaviour, it is important
to briefly mention the linear solutions to the QG equation. If it is assumed that there is no mean
flow of any kind, and for simplicity also that there is no vertical structure (N2 →∞), the potential
vorticity equation (2.20) becomes

∂tq
′ + β∂xψ

′ = 0 (2.31)

If β = 0, then nothing very interesting happens. However when β is non-zero, (2.31) has wave
solutions, with a Fourier transform revealing the dispersion relation

ω =
−βkx
k2
x + k2

y

. (2.32)

The planetary wave propagation mechanism has a very intuitive real space description, which is
outlined in Figure 2.3. As we will see, planetary waves are fundamental to zonal jet formation.

2.1.2 Fluid equations in spectral form

In turbulence theory, it is often extremely useful to be able to examine a problem from a spectral
space viewpoint. In spectral space, nonlinear advection terms of the type J [ψ, q] transform into
triad terms, describing energy exchange between the various modes of the system. In the absence
of nonlinearity, the only way modes can gain or lose energy is through non-conservative effects.

Spectral transforms of fluid equations are easiest to perform in Cartesian coordinates, where simple
Fourier transforms of all variables usually produce the required results. In non-Cartesian geome-
tries, such as the experimental rotating annulus, Fourier modes are not in general eigenfunctions
of the physically relevant operators, and derivation of spectral equations can become much more
difficult.

In general, spectral equations are derived from real space ones by substituting in the spectrally
transformed form of all variables, and then performing a further transform over the entire equation.
For example, for the spatially unbounded, constant density Navier-Stokes equations, in a non-
rotating frame, we can write all variables in terms of their Fourier integral coefficients, e.g.,

u(x, t) =
∫

u(k, t)eik·xd3k. (2.33)

Writing u(k, t) = uk for brevity and substituting (2.33) into (2.1) (ignoring the conservative scalar
term Φ), we arrive at

∂

∂t

∫
uke

ik·xd3k +
(∫

ule
il·xd3l

)
·
(∫

imume
im·xd3m

)
= −ρ−1

0

∫
ikpkeik·xd3k− ν

∫
|k|2uke

ik·xd3k. (2.34)
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Figure 2.3: a) A vortex tube moving southwards elongates, and hence must spin up, gaining vorticity,
in order to conserve angular momentum (alternatively, potential vorticity). Likewise, a vortex tube
moving northwards spins down. b) If a sinusodial chain of vortex tubes is displaced latitudinally, the
induced vorticity change of each tube will cause one of its neighbours to move north, and the other
southwards. The motion is such that the wave will always move westward, with larger waves travelling
faster, as is evident from (2.32).
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If (2.34) is Fourier transformed, the definition of the k-space δ-function

δk ≡ δ(k) =
1

2π

∫
d3xe−ik·x (2.35)

and the incompressibility condition (2.5), then allows one to derive the spectral Navier-Stokes
equation

∂uk

∂t
+ ν|k|2uk +Oklmulum = 0. (2.36)

The linear term ν|k|2uk describes viscous damping in spectral space. The function Oklm is a triad
operator, coupling triplets of modes together that satisfy the resonance criterion k = l + m. Its
exact form here is

Oklmulum = i

∫ ∫
δk=l+md3ld3m

(
um(ul ·m)− k

|k|2
(um · l)(ul ·m)

)
(2.37)

with each integral over three-dimensional spectral space [58].

A similar method can be used to derive spectral equations for the two-layer quasigeostrophic equa-
tion (2.21). Here the derivation is slightly easier, however, as all dynamical variables are scalars.
Following the same method as for the Navier-Stokes case, the resulting equations are

∂ζk
∂t

+ iω1kζk +Aklmζlζm +Bklmσlσm = 0

∂σk

∂t
+ iω2kσk + Cklmσlζm = 0 (2.38)

where ζk = −|k|2ψk and σk = −(|k|2 + k2
D)τk. The linear response terms ω1k and ω2k are simply

the frequencies of barotropic and baroclinic planetary waves

ω1k ≡ −βkx
|k|2

ω2k ≡ −βkx
|k|2 + k2

D

. (2.39)

The form of the triad operators in (2.38) is

Aklm =
∫ ∫

δk=l+md2ld2m
J [l,m]
|l|2

Bklm =
∫ ∫

δk=l+md2ld2m
J [l,m]
|l|2 + k2

D

Cklm =
∫ ∫

δk=l+md2ld2m
(

1
|l|2 + k2

D

− 1
|m|2

)
J [l,m] (2.40)

with each integral now over two-dimensional spectral space.

Wave turbulence theory

If a flow is only weakly turbulent, the nonlinear triad coupling term will be small and linear wave
motion and / or damping will dominate. In this limiting case, the dynamical fields can be expanded
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in terms of some dimensionless parameter λ that characterises the smallness of the nonlinear term,
e.g.,

ψk ≈ ψ0
k + λψ1

k + λ2ψ2
k + . . . . (2.41)

In the case of planetary wave interaction, for example, λ could be a Rossby number written in
terms of β, λ = 1/βLT , with L and T characteristic length and time scales, respectively. The
expansion can be truncated at low order (or possibly renormalised), allowing the derivation of a
reduced, simplified set of spectral equations. This is the basis of resonant wave interaction theory.

In resonant wave interactions, both the wavevectors and the frequencies of the interacting modes
must match up for triad coupling to occur. Incidentally, this is closely analogous to the way in
which interactions between sub-atomic particles must conserve both momentum and energy. For
barotropic planetary waves interactions, for example, the constraints

k = l + m (2.42)

ωk = ωl + ωm → kx
|k|2

=
lx
|l|2

+
mx

|m|2
(2.43)

will apply to triad selection.

These constraints have important consequences for the way in which waves, jets and turbulence
interact in quasigeostrophic fluids. In particular, if we take one of the modes in the triads to be
zonal (i.e., kx, lx or mx = 0), then it may be shown by combining (2.42) and (2.43), and studying the
form of the first triad operator in (2.40), that triad interactions between small amplitude planetary
waves cannot transfer energy to zonal modes [36]. To understand jet formation, therefore, we must
either study wave-wave interactions at higher order [41], or employ theoretical methods that do not
focus solely on spectral interactions.

As we will see in the next section, the spectral view of fluid dynamics can be extremely powerful,
and historically it has been dominant in terms of making observational predictions. However, it does
have major disadvantages, particularly when the system of interest is highly anisotropic, as is the
case for planetary-scale turbulence. Indeed, it is the view of this author that a rigid interpretation
of fluid dynamics as spectral dynamics can severely limit one’s ability to predict complex flow
behaviour. Hence, one of the driving motivations for the work in the theoretical section of this
thesis (Chapters 3 and 4) has been to combine the advantages of real space and spectral viewpoints
in one dynamical framework.
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2.2 The behaviour of turbulent fluids

Ask even a child to tell you whether or not a particular flow is turbulent and they will be able
to answer very quickly. Defining mathematically what we mean by turbulence, however, is much
more difficult. Lewis Fry Richardson, a pioneer in the development of fluid dynamics, sociology
and many other fields, famously resorted to poetry to express his understanding of turbulent fluid
motion:

Big whorls have little whorls
That feed on their velocity,

And little whorls have lesser whorls
And so on to viscosity.

Short as it is, this little limerick is actually rather brilliant, as it gets right to the heart of what
turbulence in three dimensions is all about.

Consider the classic three-dimensional turbulence problem, where a non-rotating fluid with low
viscosity is forced at large scales. This can be achieved, for example, by interrupting a laminar flow
with a wire grid. Large-scale structures (i.e., ‘big whorls’) will barely feel the effects of viscosity
(recall the factor of |k|2 in the viscous term in (2.36)). However, nonlinear triad interactions
between wavenumbers can cause the exchange of kinetic energy between scales4. In particular, it
can allow little whorls to feed on bigger ones, transferring energy to progressively smaller scales
where it can eventually be dissipated by viscous effects.

If we assume that the turbulent fluid is forced with a constant energy input, then it is reasonable
to imagine that in a statistically steady state this input will equal the power lost at the smallest
scales to viscous dissipation (kinetic → thermal energy). If we also make the much more drastic
assumption that energy exchange occurs mainly between eddies of similar wavenumber, we may
hypothesise that locally, the total energy depends only on the wavenumber and the rate at which
energy is moving to smaller scales.

Simple scaling analysis then tells us that in this so-called ‘inertial range’ where nonlinear interactions
dominate, the dependence of time-averaged kinetic energy on absolute wavenumber |k| = k must
be

E(k) = [L]3[T ]−2 = CE2/3k−5/3, (2.44)

where E is the energy input rate and C is hypothesised to be a universal constant. Equation (2.44)
was first suggested by the Russian mathematician Andrey Kolmogorov in 1941, based on a heuristic
argument similar to that given here [33]. It has now been verified by a large body of extremely
careful experiments and idealised computer simulations. Despite its predictive successes, however,
(2.44) is not a theorem; it has never been successfully derived from the Navier-Stokes equations.
To many researchers, this epitomises the central problem of turbulence.

4Technical note: in this and following sections, we use the terms ‘wavenumber’ and (inverse) ‘scale’ more or less
interchangeably. When the flows in question are isotropic, this is usually acceptable. In more general situations,
however, it can lead to trouble, as the scale variation of a flow can often be strongly dependent on position. One way
to get around this problem is to use phase space distributions, such as those employed in Chapters 3 and 4 of this
thesis.
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Figure 2.1: a) Three dimensional turbulence in a steady state involves the transfer of energy to larger
wavenumbers (∼smaller scales) b) Two dimensional turbulence in a steady state involves the transfer
of energy to smaller wavenumbers, and of enstrophy to larger ones.

Two-dimensional turbulence is a step closer to the reality of large-scale planetary atmospheric and
oceanic motion because of the Taylor-Proudman theorem (described in detail in [28]), which states
that incompressible barotropic flows in geostrophic balance do not vary with height.

However, several major differences exist that cause qualitative differences between the two cases.
The β-effect, or variation of planetary vorticity with latitude, is perhaps the most important of
all of these. Indeed, we will see later that it is the key mechanism behind the zonal jet formation
process.

2.2 Basic equations

In this section we run through the basic dynamical equations most relevant to this report. They
are presented in a hierarchical fashion, with the most general discussed first. The role of potential
vorticity as a conserved quantity is also emphasised.

Firstly though, a brief note on notation.

8

Figure 2.4: Three-dimensional turbulence in a steady state involves the transfer of energy to larger
wavenumbers (∼ smaller scales) b) two-dimensional turbulence in a steady state involves the transfer
of energy to smaller wavenumbers, and of enstrophy to larger ones.
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2.2.1 Two-dimensional turbulence

In idealised two-dimensional flows, and also in quasigeostrophic ones, the nature of turbulence is
radically different to that in the three-dimensional case. This is because these flows are far more
tightly constrained by conserved quantities. In a two-dimensional flow, vortex stretching is by
definition impossible, and vortex tubes can only change their volume if the fluid is compressible.

Assuming incompressibility, the total enstrophy of the flow, defined as the integrated square of
vorticity

Z =
∫

1
2
ζ2d2x =

∫ ∞
0

Z(k)dk (2.45)

is therefore conserved in the absence of forcing and damping. On its own, this does not help
very much; we simply have two conservation laws now instead of one. However, a far-reaching
theorem developed by Fjørtoft in the 1950s [20] shows that the combined conservation of energy and
enstrophy in a 2D fluid must dramatically alter the nature of the final flow state. By considering
the nonlinear interaction between different modes on a sphere, Fjørtoft came to the conclusion
that from an initial state, the net flow of energy must always proceed to smaller wavenumbers.
His reasoning was elegantly simple, but his original proof was made more complex by the use of
spherical normal modes, and the need to sum over all possible interacting triads.

A simpler, but less rigorous demonstration involves calculating the effect of energy and enstrophy
conservation on a single triad interaction in plane two-dimensional geometry [58]. Let us consider
three modes, with absolute wavenumbers k1, k2 and k3. The total energy and enstrophy change
after any nonlinear interaction must be zero. Noting that the dimensional relationship between
enstrophy and energy

[Z]
[E]

=
[ζ2]
[u2]

= [L−2] implies Z(k) = k2E(k) (2.46)

both conservation laws can be written down in terms of energy

δEtot = δE1 + δE2 + δE3 = 0
δZtot = k2

1δE1 + k2
2δE2 + k2

3δE3 = 0, (2.47)

where of course δE1 is the energy change for the 1st mode and so on. Eliminating the intermediate
energy change δE2 we find

δE3

δE1
=
k2

1 − k2
2

k2
2 − k2

3

. (2.48)

Equivalently, we can write both conservation laws in terms of enstrophy and derive

δZ3

δZ1
=
(
k2

3

k2
1

)
k2

1 − k2
2

k2
2 − k2

3

. (2.49)

Equations (2.48) and (2.49) fundamentally constrain the flow of energy in the triad interactions.
If, for example, k1 = 2k2 = 3k3, then

δE3

δE1
=

27
5
> 1 (2.50)

δZ3

δZ1
=

3
5
< 1. (2.51)
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It may be shown that whatever values for k1, k2 and k3 are chosen, the net energy transfer is
always to lower wavenumbers. Fjørtoft’s theorem is one of the most remarkable results in fluid
dynamics, as it implies that from an extremely nonlinear system with random initial conditions,
energy must move to larger-scale structures, which will eventually dominate the fluid motion.
Conversely, enstrophy moves downscale, where it must eventually experience dissipation in a real
fluid.

It is worth noting what the theorem does not tell us; namely anything about the eventual result
of the upscale energy transfer. It speaks only about one triad exchange, which by construction
is at a scale where any energy removal or input is negligible. To assess what happens elsewhere,
particularly at very low wavenumbers, more physics would need to be included.

The energy spectrum for two-dimensional flow can be predicted from these results in a rather
ad-hoc way. If it is assumed that energy injection into the system occurs at a single value k = kin,
Fjørtoft’s analysis shows that energy will travel upscale to lower k values, while enstrophy will travel
downscale. Therefore it can be argued that if there is a large separation in k-space between energy
injection and dissipation of enstrophy, the energy spectrum will effectively divide into two regimes;
a low wavenumber one determined by the rate of energy injection E , and a high wavenumber one
determined by the rate of enstrophy dissipation, η. Assuming a δ-function input of energy at kin
and using more dimensional analysis, the energy spectrum can then be constructed piecewise

E(k) =
{
E1(k) = C1E2/3k−5/3 k < kin
E2(k) = C2η

2/3k−3 k > kin
(2.52)

A comparison between the 3D and 2D spectral predictions is given in Figure 2.4.

Two-dimensional turbulence is a step closer to the reality of large-scale planetary atmospheric and
oceanic motion, because the stratification and rotation effects described in Section 2.1 cause vortex
columns to align themselves in the vertical direction. However, several major differences exist that
cause qualitatively different behaviour in the planetary case. The two most important of these are
the β-effect, and vertical flow structure due to processes like baroclinic instability. We focus on the
latter in the next section.

2.2.2 Two-layer quasigeostrophic turbulence

In this section, we examine triad interactions in the two-layer, f -plane (β = 0) quasigeostrophic
model and see how inclusion of the baroclinic mode affects the steady-state properties of the fluid.
The problem is one that was first examined by Rick Salmon in 1978 [57], and represents the
simplest possible situation that still includes some vertical structure. As the experiment described
in Chapters 5-7 is baroclinically forced at large scales, his analysis is highly relevant to this thesis.

Firstly, from the definition of two-layer QG energy

Etot =
1
2

∫
d2x

(
∇ψ1 · ∇ψ1 +∇ψ2 · ∇ψ2 +

1
2
k2
D (ψ1 − ψ2)2

)
(2.53)

=
1
2

∫
d2x

(
∇ψ · ∇ψ +∇τ · ∇τ + k2

Dτ
2
)

(2.54)

it may be noted that the combined energy of the barotropic and baroclinic modes is equal to

Ek = |k|2|ψk|2 +
(
|k|2 + k2

D

)
|τk|2

Ek = Tk + Ck (2.55)
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The Aklm are triad operators, coupling modes together that satisfy the resonance criterion k = l + m.
Their exact form here is

Aklm =
1√
2π

2

∫ ∫
dldm

l∧m
|l|2 δk=l+m

Bklm =
1√
2π

2

∫ ∫
dldm

l∧m
|l|2 + k2

D

δk=l+m

Cklm =
1√
2π

2

∫ ∫
dldm

(
1

|l|2 + k2
D

− 1
|m|

)
l∧mδk=l+m (2.14)

with each integral over two dimensional spectral space. If they are equal to zero then (2.13) simply
become the dispersion relations for barotropic and baroclinic planetary waves. (2.13) can easily be
derived by substituting the inverse Fourier transform into the real space equations (2.11) for every
ζ(x, t), using the inversion relations ζk = −|k|2ψk and σk = − (|k|2 + k2

D

)
τk , and then Fourier

transforming over all variables.

2.3 Two-layer turbulence

There are few rigorous statements that can be made about strongly turbulent flows. Those that can
often invoke conservation principles, such as the ones already mentioned for energy and enstrophy
in the two dimensional case. Here we will examine triad interactions in the two layer, f -plane
(β = 0) model and see how inclusion of the baroclinic mode affects the steady-state properties of
the fluid. The problem is one that was first examined by Rick Salmon in 1978[21]. As the experiment
described in this report is baroclinically forced at large scales, his results are highly relevant to us.

Firstly, note that the combined energy of the barotropic and baroclinic modes is equal to

Ek = |k|2|ψk|2 +
(|k|2 + k2

D

) |τk|2
Ek = Tk + Ck (2.15)

for any given wavenumber, k.

energy
Large-scale forcing

(e.g. differential solar heating)

Large-scale dissipation 

(e.g. Ekman damping)

BAROCLINIC

BAROTROPIC

kD

potential enstrophy

Small-scale dissipation

(ageostrophic effects)

INCREASING WAVENUMBER

Figure 2.4: Spectral space cartoon of the energy and potential enstrophy transfers believed to occur
in the limit kforcing >> kD >> kageostrophic.

13

Figure 2.5: Spectral space cartoon of the energy and potential enstrophy transfers theorised to occur
in the limit kforcing << kD << kageostrophic.

for any given horizontal wavenumber k.

In the 2D turbulence case we have just considered, potential vorticity is simply ordinary (Eulerian)
vorticity, so it is natural that enstrophy, the square of vorticity, is also conserved. By analogy, for
the two-layer model we can define potential enstrophy

Zk = |k|4|ψk|2 +
(
|k|2 + k2

D

)2 |τk|2
Zk = |k|2Tk +

(
|k|2 + k2

D

)
Ck (2.56)

and see that in any two-layer triad interaction, both energy and potential enstrophy must be
conserved.

Now from (2.38), it is obvious that there are two types of triad interaction permitted:

andψk

ψl

ψm τm

τl
ψk

Three barotropic modes can exchange energy with each other, or one barotropic mode can ex-
change with two baroclinics. The restriction to only two interaction types can be seen as a direct
consequence of vertical wavenumber conservation — a barotropic mode has m = 0, while the
single baroclinic mode in the two-layer model has m = ±1. The efficiency of energy exchange be-
tween modes will depend on the ratio of each of their wavevectors to the deformation wavenumber,
|k|2/k2

D.

In [57], Salmon carried out a detailed analysis of the steady-state solution to this problem. Careful
consideration of non-conservative effects (forcing and damping) along with the crucial assumption
of irreversibility, led to some very interesting conclusions about the direction of energy flow in
spectral space. His result, which still dominates thinking on the baroclinic turbulence problem
today, can be neatly summarised in diagrammatic form (Figure 2.5). If baroclinic forcing is large-
scale, as is the case for the differentially heated annulus experiment, the Earth’s atmosphere, and
at least partially also for the gas giant planets, energy is initially transferred to larger baroclinic
wavenumbers (∼ smaller-scale structures). When it hits the deformation wavenumber, transfer to
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Figure 2.5: a) The two-dimensional cascade argument as seen in the k, l plane. b) Its modification in
the presence of planetary waves, which arise due to the β effect.

wave interaction theory to define an eddy turnover time

τ ≡ 1√
k3E(k)

(2.17)

and realised that when this is larger than the planetary wave period, triad interactions will be
inhibited by the waves, effectively halting the cascade. Given that the planetary wave dispersion
relation in the absence of large zonal flow is

ωk =
−βk

k2 + l2
(2.18)

this appears to mean that cascade interaction will be prohibited in a dumbbell shaped region of
k-space. If large scale friction (an essential part of the spectral view of jet formation) is included,
it can be argued that energy will tend to collect in modes that satisfy kx = 0, ky = small but not
zero; i.e. zonal modes. This is illustrated in Figure 2.4.

Rhines also predicted from scale analysis that the width of the zonal mode (or jets) would be of
order

Lβ =

√
Urms

β
(2.19)

However, the frictional argument implies that a ‘frictional wavenumber’ may be a more important
quantity in reality for determining the width of observed jets. See Galperin et. al. (2004)[9] for
more details.

Very little theoretical work has been done on combining the results of this section and the previous
one. Salmon [21] notes that the two-layer arguments are based on conservation laws and hence
should survive the inclusion of a constant β-effect, and previous numerical experiments[16] appear
to agree with him. However, much uncertainty about the exact nature of baroclinic zonal jet
formation clearly remains.
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Figure 2.6: The spectral view of β-plane jet formation.

the quasi-2D barotropic modes becomes effective. If the separation of scales is large enough, it
might then be expected that the barotropic part will only ‘see’ forcing at the deformation radius
scale, and hence will behave similarly to the 2D turbulent flow described in the previous section.
In particular, it is generally expected that a barotropic inverse cascade will still transfer kinetic
energy from small to large scales.

Note that this argument critically depends on three assumptions. First, it is assumed that the
flow is in a statistically steady state. Second, some form of large-scale damping is required to
remove energy from the barotropic field. The third and most serious assumption is that there is a
well-defined separation between the forcing scale and deformation radius. In many real situations,
including the atmospheres of Earth and the gas giant planets, this separation is not particularly
distinct.

In Chapter 6, it will be seen to just what extent these classical turbulence ideas hold in a real
laboratory experiment.

2.2.3 Turbulence on a β-plane

The final heuristic description we wish to consider is that of barotropic turbulence on a β-plane
(or, more generally, a rotating sphere). This problem was first tackled by Peter Rhines in 1975
[54]. In a seminal paper, Rhines argued that the ‘inverse cascade’ of two-dimensional turbulence
(see Figure 2.4) would be modified at low wavenumbers by the presence of planetary waves.
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He used scale analysis to define an eddy turnover time

τeddy ≡
1√∫

k2E(k)dk
≈ 1
Urms|k|

(2.57)

and argued that when this is larger than the planetary wave period, triad interactions will be
inhibited by the waves, effectively halting the cascade. Given that the barotropic planetary wave
dispersion relation in the absence of large zonal flow is (2.32), this appears to mean that cascade
interaction will be prohibited in a dumbbell shaped region of k-space, with the boundary given by

kx ∝ ±|k|3. (2.58)

If large-scale friction (an essential part of the spectral view of jet formation) is included, a steady
state may be reached, in which energy tends to collect in modes that satisfy kx = 0, ky = small
but not zero (i.e., zonal modes). These ideas are illustrated schematically in Figure 2.6.

Rhines also predicted from scale analysis that the characteristic width of the zonal flow (equivalently,
of the jets) would be of order

Lβ =

√
Urms
β

. (2.59)

As it is derived from a combination of fundamental system parameters, the Rhines scale, as it has
become known, is often of importance in determining the steady-state jet width of natural and
experimental systems. However, its usefulness is somewhat limited, as Urms is not a fundamental
parameter; it is only known after the fluid is in a steady state.

Insightful as it was, Rhines’ work, like all the theories expounded in this section, was essentially
heuristic in nature, and cannot provide a detailed dynamical explanation of the jet formation
process. As a result, barotropic β-plane jet formation has been the subject of intensive numerical
study by many researchers (e.g., [12], [31], [68]). One particularly important study was that of Vallis
and Maltrud [64], who simulated decaying, unforced turbulence, and originated the ‘planetary wave
dumbell’ concept in order to explain their results. Interestingly, however, they also suggested that
there was no a priori justification for zonal energy to peak at the Rhines scale.

More recently, Galperin, Sukoriansky and co-workers have done much to clarify the spectral view
of idealised β-plane zonal jet formation. In Sukoriansky et al. [61], with the aid of a series of long
integration time computer simulations of the barotropic QG equations on a sphere, they produced
an empirical theory for the observed slopes of both total and zonal energy spectra. Making use
of scaling analysis, they predicted that in a certain ‘zonostrophic’ regime, the steady-state zonal
energy spectrum at large scales would be modified, taking the form

Ez(ky) = Czβ
2k−5
y . (2.60)

They verified the existence of (2.60) in their idealised simulations, and predicted an approximate
value of 0.5 for the ‘universal’ constant Cz. In Galperin et al. [21], they noted further properties of
the idealised barotropic system, including the importance of the large-scale damping mechanism in
determining the steady-state jet structure. In particular, if the damping is scale-independent, as is
the case for Ekman suction, they found that zonal kinetic energy peaked at a value

kfr ≈
(

10Cz
κβ2

4E

)1/4

, (2.61)
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defined in terms of external system parameters (here κ is the Ekman damping parameter and E is
the energy input rate as before). They showed that in the zonostrophic regime, this wavenumber
was, to within a factor of O[1], the inverse of the Rhines scale L−1

β .

Turbulence in two-layer β-plane flows

Very little theoretical work has been done on combining the results of this section and the previous
one. Salmon [58] noted that the two-layer arguments are based on conservation laws and hence
should survive the inclusion of a constant β-effect. As his argument is based only on conservation
laws and an irreversibility principle, it does make quite unambiguous predictions, but only about
the general direction of energy transfer. Further theoretical progress has proved difficult, not least
because for many real flows the deformation radius is not much smaller than the observed jet
width. In this situation standard cascade-type arguments, which are dependent on the existence of
well-defined inertial ranges in spectral space, are of dubious validity.

Some numerical simulations of baroclinically forced turbulence have been carried out. Panetta [43]
simulated two-layer β-plane turbulence in a doubly periodic domain, and found that equivalent
barotropic jets with width proportional to the Rhines scale formed, with the system only reaching
a steady state over a time-scale longer than that suggested by any simple combination of model
parameters.

However, the computational power needed to simulate fully three-dimensional turbulent flows for
long time periods mean that this problem has not been well studied in general. In particular, large
uncertainties remain concerning the exact nature of energy transfer from baroclinic to barotropic
modes, as well as that between eddies and the mean zonal flow. The motivation for additional
studies and theoretical work clearly remains strong.

Other approaches to β-plane jet formation

Given the problems associated with a purely spectral view of turbulent jet formation, it is not
surprising that many researchers have attempted to pursue other methods. Much work has been
done on the subject, and no attempt to make a comprehensive review will be made here. We
mention just two other avenues of research, both of which are highly relevant to the new work
described in the next chapter.

The first is eddy-mean flow theory, which properly began in a planetary context with the work of
Eliassen and Palm [17], and was greatly extended and generalised by Andrews and McIntyre in
[3] and [4]. In this mainly real space approach, less emphasis is placed on turbulent interactions
between modes. Instead, the interaction between zonal flow and ‘eddies’ (i.e., everything else)
takes centre stage. As will be seen in the next chapter, a key part of eddy-mean flow theory is the
non-acceleration theorem, which shows eddy motion and jet formation to be directly tied to one
another.

The other approach, which has perhaps seen rather less attention to date than it deserves, is wave-
kinetics. In wave-kinetic theory, the interactions of broadband systems of waves are described using
the formalism first developed by Hasselmann, Zahkarov and others [24][72]. At least for weakly
turbulent flows, this approach has allowed the prediction of certain flow properties, such as the
slopes of energy spectra, that have not been possible using other methods.
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However, previous analyses involving this approach have either ignored the mean flow entirely, or
made an early assumption of spatial scale separation between mean flow and waves. Analyses
involving planetary waves have also usually explored certain special cases, e.g., the limit of large
zonal flow and small β-effect. Two studies of particular relevance to the next two chapters are
Dyachenko et al. (1992), in which a wave-kinetic description of the interaction between large-scale
vortices and small-scale planetary waves was developed, and Manin and Nazarenko (1994), where
a phase space equation was used to study the interaction between scale-separated zonal flows and
planetary waves in the limit of small β-effect [16][38].

In the next two chapters, the aim is to make use of the phase space view more directly than has
been done in previous studies. First, a phase space planetary wave equation is derived that includes
all effects of the mean flow on wave propagation. It is shown that the equation can be used to
generalise previous results in real space wave-mean flow theory. Theoretical arguments, combined
with phase space analysis of a numerical model, are then used to give an intuitive picture of jet
formation and asymmetry in some simple wave-mean flow interaction examples.

2.3 Summary

What have we covered in this review chapter? The main results are summarised below for conve-
nience.

• Quasigeostrophy (QG) is an approximation to the Navier-Stokes equations valid for rotating,
stratified planetary-scale fluids.

• On average, kinetic energy moves to larger wavenumbers in three-dimensional turbulence.
Kinetic energy moves to smaller wavenumbers and (potential) enstrophy to larger ones in
two-dimensional and QG turbulence.

• In a turbulent two-layer QG fluid with large-scale baroclinic forcing, energy transfer from
baroclinic to barotropic modes occurs optimally at the internal deformation wavenumber,
kD.

• When the β-effect is present, the upscale energy transfer at medium and small wavenumbers
is altered by planetary wave motion. Zonal jets somehow form as a result.

As has been emphasised throughout this chapter, much of the established ideas on turbulent fluid
motion are heuristic, based as they are on scale analysis and intuitive guesses. Cascade theory does
a fairly good job of predicting the slope of energy spectra in the idealised cases of three and two-
dimensional isotropic turbulence. However, its ability to describe the β-plane jet formation case is
limited at best. When vertical structure is included in the dynamical equations, the shortcomings
of the theory become even more apparent.

Two alternative theoretical approaches are the wave-mean flow formalism of Eliassen & Palm (1961)
and others, and the phase space approach of Dyachenko et al. (1992) and Manin and Nazarenko
(1994). In the next two chapters, we discuss a new derivation that combines these two approaches.
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Chapter 3

Phase space approach I: Theory

3.1 Overview

In this chapter, we take a phase space approach to the problem of planetary wave – zonal flow
interaction. The aim of the approach is to create a more intuitive description of jet formation than
has previously been possible with conventional real and spectral space techniques. To this end, we
will first be reducing the fully nonlinear equations of Chapter 2 to as simple a form as possible,
without removing the parts that are essential to the phenomena we are interested in.

In Section 3.2, previous results in quasigeostrophic wave-mean flow theory, the starting point for
the new approach, are briefly discussed. In Section 3.3, a quantum-mechanical tool, the Wigner
distribution, is introduced and used to derive a ‘quantum’ Boltzmann equation that describes
the transport of planetary waves in real and spectral space simultaneously. With an assumption
of spatial scale separation between the planetary waves and zonal flow, a phase space transport
equation is then derived that is more general than those used in other studies [16][38]. In particular,
integration of the equation over wavenumber allows generalised versions of previous real space
conservation laws to be derived. In Chapter 4, a simple numerical simulation will be introduced
that demonstrates the utility of the phase space view in analysing wave-mean flow problems. The
following two chapters are based on a paper [69] that is in preparation for publication.

3.2 Review of basic wave-mean flow theory

In this section we briefly review some of the established theoretical results on wave-mean flow
interaction. For a more detailed and thorough analysis than that given here, the text [2] is rec-
ommended. As discussed in Chapter 2, the essential features of many large-scale geophysical flows
can be captured by the quasigeostrophic potential vorticity (QGPV) equation

Dq

Dt
=
∂q

∂t
+ J [ψ, q] = −κq (3.1)

where ψ is the velocity streamfunction and q =
(
∂xx + ∂yy + ∂z

((
f2

0 /N
2
)
∂z
))
ψ + βy is the quasi-

geostrophic potential vorticity as before.

For convenience, in this chapter we work with (3.1) in Cartesian coordinates, according to the
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Figure 3.1: Schematic of the theoretical setup: a β-plane model periodic in the x-direction and open in
the y-direction. As discussed in Chapter 2, the β-plane approximates fluid motion on the midlatitudes
of a planet, with x and y equivalent to east-west and north-south directions respectively.

standard β-plane model. We also focus on the situation where the system is unbounded in the y
(north-south) direction. The theoretical setup is summarised in Figure 3.1.

As discussed in Chapter 2, the linearised form of (3.1) has planetary wave solutions. With vertical
structure included, the dispersion relation (2.32) becomes

σ =
−βkx

k2
x + k2

y + k2
z

(3.2)

when no zonal flow or damping is present. In (3.2), kz is understood to be an eigenvalue of the
usual vertical structure equation such that ∂z

((
f2

0 /N
2
)
∂zΨ

)
= −k2

zΨ, subject to suitable boundary
conditions.

As we wish to study the interaction between jets and planetary waves, it is natural to define an
average in the x (east-west) direction such that any quantity decomposes into a mean flow and
disturbance field: f(x, t) = f(y, z, t) + f ′(x, t). By averaging (3.1) we can derive

∂q

∂t
= −J [ψ′, q′]− κq (3.3)

= −u′∂xq′ − v′∂yq′ − κq (3.4)

= − ∂

∂y
v′q′ − κq (3.5)

for the mean flow, as J [ψ, q] = 0. The third line follows with the observation that ∂xu′ + ∂yv
′ = 0,

as u′ and v′ are geostrophic velocities, determined entirely by the streamfunction ψ′.

For the disturbance equation, we subtract (3.5) from (3.1) to get

∂q′

∂t
+ u

∂q′

∂x
+ γv′ = J [ψ′, q′]− J [ψ′, q′]− κq′. (3.6)

Here γ = ∂yq is the total gradient of zonal potential vorticity. The left hand side of (3.6) describes
the evolution of planetary waves in the presence of a zonal flow, while the right describes non-
conservative effects and wave-wave interactions. As we are primarily concerned with wave-mean
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flow interaction, we assume from here onwards that the wave-wave terms in (3.6) are small. In
Chapter 4, where we discuss the numerical simulation of a generic jet-wave interaction problem,
the situations where this assumption begins to fail will be made clear.

For moderate disturbance amplitudes, it can be shown that the wave action, defined as n ≡ 1
2q
′2/γ,

is a conserved quantity. This can be seen through multiplication of (3.6) by q′/γ, which firstly
results in

∂n

∂t
+ v′q′ = −2κn. (3.7)

if terms of order q′3 and greater are neglected. If spatial scale separation between zonal flow
and waves is then assumed and the waves are taken to be monochromatic, a real space transport
equation for wave action can be written

∂n

∂t
+∇m · (vmn) = −2κn, (3.8)

where ∇m = (∂y, ∂z) and vm is the meridional (y, z) group velocity of the waves. For further details
of the derivation of (3.7), see [2].

Equation (3.8) simply states that in the absence of damping (κ = 0), n is a conserved quantity that
travels at the group velocity vm. As we will see, n can be interpreted as a density of planetary
wavepackets, analogous to the density of fluid particles ρ. Thus equation (3.8) is directly analogous
to (2.2), which states that mass is conserved and transported at the fluid velocity u.

Note that our definition of n depends on the potential vorticity gradient, γ, remaining non-zero. If
γ changes sign somewhere in the domain, it is possible that the zonal flow may be unstable. The
problems associated with defining n in these cases is discussed in more detail in [44].

The final established result of importance to the rest of this chapter is the powerful non-acceleration
theorem, which states that in the absence of forcing or damping, the rate of change of zonal potential
vorticity and wave action are directly tied to each other

∂

∂t

(
q − ∂n

∂y

)
= 0. (3.9)

Equation (3.9) can be proved by use of the Taylor identity [2], or by combining equations (3.5)
and (3.7) and setting κ = 0. In Chapter 4, where a simple wave-mean flow numerical simulation is
introduced, (3.9) will be extremely helpful for interpreting and understanding the results.

3.3 The ‘quantum’ Boltzmann equation

Having described the basic features of the planetary wave-mean flow problem, we now wish to
extend the scope of the analysis. The aim is to construct a generalised phase space transport
equation for the planetary waves, leaving any scale separation approximations until as late as
possible in the derivation. As has been emphasized, phase space equations have already been used
to study zonal jet formation in several previous studies. The difference here is that a) we use a
new, simpler derivation that for the first time incorporates all the effects of the mean flow on the
waves and b) we directly compare the scale-separated predictions with the results of a more general
numerical simulation.

33



Perhaps the best known example of a phase space transport equation is the Boltzmann equation
of classical mechanics. It describes the (smoothed) collective interaction of an ensemble of point
particles in phase space, due to a field that is a function of the position of every particle. For
example, in stellar dynamics, the Boltzmann equation is used to describe the motion of an ensemble
of stars, with each star’s motion determined by the mean gravitational field due to all the others.

In quantum mechanics, the quantum Boltzmann equation is needed to describe the collective in-
teraction of an ensemble of particles. Due to the uncertainty principle, quantum particles cannot
simultaneously have a well-defined position and momentum, and hence do not occupy single points
in phase space.

As fluid mechanical wavepackets are not pointlike particles in phase space either, if we wish to
construct a general equation for their motion, we must initially take the quantum-mechanical
route. The central difference between a quantum system and a fluid one is that in the fluid case,
any wavefield can be decomposed into any number of wavepackets, as the base packet amplitude
can be chosen arbitrarily. While wave action, a continuous quantity analogous to wavepacket
number density, is conserved, the discrete notion of ‘number of wavepackets’ is nonsensical, strictly
speaking, in a classical fluid context.

In the case of quasilinear planetary waves, interaction can only occur indirectly through modification
of the zonal flow profile. It is appropriate for this problem, therefore, to view the zonal flow as
the ‘mean field’ through which the wavepackets couple, analogous to the gravitational field in the
stellar case.

We begin the derivation of the planetary wave Boltzmann equation by writing the disturbance
equation (3.6) in terms of a new variable φ ≡ q′/

√
2γ. If we neglect terms of order φ2 and higher,

(3.6) then takes the form

i
∂φ

∂t
= Ĝφ, (3.10)

where the wave operator Ĝ is defined as

Ĝ[x̂, k̂, t] ≡ √γ −k̂x
k̂2
x + k̂2

y + k̂2
z

√
γ + uk̂x − iκ (3.11)

and the position and wavevector operators are

x̂ = x and k̂ =
(
−i∂x,−i∂y,−i

√
∂z
((
f2

0 /N
2
)
∂z
))

(3.12)

respectively, as we are working in a position space representation. Note that the denominator in
(3.11) is simply the potential vorticity inversion operator, such that

−
(
k̂2
x + k̂2

y + k̂2
z

)−1
q =

(
∂xx + ∂yy + ∂z(f2

0 /N
2)∂z

)−1
q = ψ. (3.13)

When scale separation is assumed, operators become real numbers, and the large-scale zonal flow
‘sees’ wavepackets as phase space points with exact values of x and k. Then, (3.11) simply becomes
the generalised dispersion relation for small-scale planetary waves in the presence of a zonal flow
and damping

Ĝ[x̂, k̂, t]→ ω(y, z,k, t) =
−γkx

k2
x + k2

y + k2
z

+ ukx − iκ. (3.14)
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To progress towards the phase space transport equation, we now need to utilise a tool from quantum
mechanics: the Wigner distribution. It is defined in three dimensions as

Nφ,φ(x,k, t) =
1

(2π)3

∫ +∞

−∞
φ∗
(

x− 1
2
x1, t

)
e−ik·x1φ

(
x +

1
2
x1, t

)
d3x1 (3.15)

or alternatively in spectral space as

Nφ,φ(x,k, t) =
1

(2π)3

∫ +∞

−∞
Φ∗
(

k− 1
2
k1, t

)
eix·k1Φ

(
k +

1
2
k1, t

)
d3k1 (3.16)

where Φ(k, t) = (2π)−3/2 ∫ +∞
−∞ exp[−ik·x]φ(x, t)d3x is the Fourier transform of φ. Nφ,φ can broadly

be thought of as a phase space distribution for the function φ, but it has some fairly weird properties
— not least of which being that it can take negative values. However, its projections onto real and
spectral space are always positive-valued.

As an example, let us examine the simple wavepacket function

φ(y) = e−((y−y0)/∆y)2+il0y (3.17)

In this case, the Wigner function only varies in (y, ky) space, where it takes the form

Nφ,φ(y, ky) =
1

2π

∫ +∞

−∞
φ∗
(
y − 1

2
y1

)
e−ikyy1φ

(
y +

1
2
y1

)
dy1 (3.18)

=
(

∆y/
√

2π
)
e−2((y−y0)/∆y)2−((ky−l0)∆y)2/2 (3.19)

i.e., that of a two-dimensional gaussian. Both φ(y) and Nφ,φ(y, ky) for this example are plotted in
Figure 3.2, along with the Fourier transform amplitude |Φ(ky)|.

By taking a time derivative of (3.15) and using (3.10), we may write

i
∂Nφ,φ
∂t

= N−Ĝφ,φ +Nφ,Ĝφ. (3.20)

Then, by defining the phase space operators X̂ = x + i
2∇k and K̂ = k − i

2∇x (see e.g., [63]) and
noting that

X̂Nφ,φ = Nφ,x̂φ K̂Nφ,φ = Nφ,k̂φ, (3.21)

and hence clearly

X̂nNφ,φ = Nφ,x̂nφ K̂nNφ,φ = Nφ,k̂nφ, (3.22)

the fairly weak assumption that Ĝ[X̂, K̂, t] can be expanded in powers of the two operators X̂ and
K̂ allows us to arrive at

i
∂Nφ,φ
∂t

=
(
Ĝ[X̂, K̂, t]− Ĝ∗[X̂, K̂, t]

)
Nφ,φ. (3.23)

Equation (3.23) is the ‘quantum’ Boltzmann equation, describing the transport of planetary wave
action in phase space. Although it does not depend on any assumption of scale separation between
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Figure 3.2: A real space function φ(y) (left), its normalised Fourier power spectrum |Φ(ky)| (bottom
right) and the magnitude of the associated Wigner distributionNφ,φ (top right). In this example l0 = 50,
y0 = 0.5 and ∆y = 0.2.

zonal flow and waves, we can easily show that it reduces to a more familiar Boltzmann1 equation
via a Taylor expansion of the operator Ĝ about x and k. Truncation of the Taylor expansion at
first order allows us to write

Ĝ[X̂, K̂, t] ≈ ω(x,k, t) +
∂ω

∂x
· i

2
∂

∂k
− ∂ω

∂k
· i

2
∂

∂x
. (3.24)

A similar expansion for Ĝ∗[X̂, K̂, t] and substitution into (3.23) then leads to

∂N
∂t

+ v · ∂N
∂x

+ F · ∂N
∂k

= Γ[N ] (3.25)

where v and F, the group velocity of, and force on, a wavepacket respectively, have their usual
definitions as v = ∇kω and F = −∇xω. For brevity, we write N ≡ Nφ,φ from here.

Equation (3.25) is equivalent to (3.23) in the geometric optics limit of small-scale disturbances2.
It describes the collective motion of an ensemble of point-like wavepackets through phase space.
The right hand side of (3.25) contains all nonconservative terms: according to our derivation,
Γ[N ] = −2κN . However, if the effects of wave-wave interactions were to be included, Γ would
also contain more complicated terms describing collisions between wavepackets. For the general
case of planetary waves on an arbitrary zonal flow, these terms are not known. They have been
derived, however, for small-scale planetary waves in the absence of zonal flow by Reznik [53]. As
the interaction between waves and zonal flow is our main interest here, we stick to the case where
wave-wave terms can be neglected.

1Note that when κ = 0, (3.25) is conservative, and is more commonly referred to as a Vlasov equation.
2In other studies, the set of simplifications that lead to geometric optics is often referred to as the WKBJ approx-

imation (e.g., [2][63]). However, precise definitions of the WKBJ limit vary. For simplicity, therefore, we only use
the term ‘scale-separation’ to refer to the Taylor expansion that reduces (3.25) to (3.23) here.
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For later use, we note that for small-scale planetary waves, we can differentiate (3.14) to obtain
group velocities and rates of change of wavenumber or ‘forces’

v =
dx
dt

=
(
− γ

|k|2
+ u+

2γk2
x

|k|4
,
2γkxky
|k|4

,
2γkxkz
|k|4

)
F =

dk
dt

=
(

0,
kx
|k|2

∂γ

∂y
− kx

∂u

∂y
,
kx
|k|2

∂γ

∂z
− kx

∂u

∂z

)
, (3.26)

where we have written |k|2 = k2
x + k2

y + k2
z etc. Note finally that if we define the wave action n (see

equation (3.7)) to be the projection of N onto (y, z) real space

n(y, z, t) ≡
∫ +∞

−∞
N (x,k, t)d3k, (3.27)

we can recover the results of standard wave-mean flow theory outlined in Section 3.2. By integrating
(3.25) over k, making use of the fact that ∇x ·v+∇k ·F = 0 and assuming that N → 0 as |k| → ∞,
we arrive at

∂n

∂t
+∇m · (〈vm〉n) = −2κn, (3.28)

where

〈vm〉 ≡
1
n

∫ +∞

−∞
vNd3k (3.29)

is the phase space averaged (y, z) group velocity for the planetary waves. Equation (3.28) is a
generalisation of (3.8) to a broadband distribution of small-scale waves. It is interesting to note
that its derivation from (3.25) is directly analogous to the derivation of the equation of continuity
(2.2) from the Boltzmann equation in fundamental fluid dynamics.

3.4 Discussion

In this chapter we have derived basic theoretical results necessary for the phase space approach
to understanding jet formation. Starting from standard wave-mean flow theory, we have used the
Wigner distribution to describe a broadband ensemble of planetary waves as a continuous ensemble
of wavepackets. In the limit of small-scale waves and large-scale zonal flow, we have shown that
the derived quantum Boltzmann equation (3.23) reduces to a transport equation of the same basic
form as those used in other studies (e.g., [16]).

The analysis presented here generalises previous work on the subject in several ways. First, use of
the Wigner distribution allows (3.25) to be derived in a systematic and rigorous way, and makes
clearer the interesting links between wave-mean flow theory and quantum mechanics. Second,
use of the variable φ ≡ q′/

√
2γ ensures the correct form for the phase space wave action density,

N , allowing previous real space wave-mean flow results to be derived directly from the planetary
Boltzmann equation. The analyses of [16] and others, where the equation was derived by an entirely
different method, neglected the important contribution of the zonal flow to the total potential
vorticity gradient γ.

The main limitation of the analysis in this chapter has been the restriction to wave-mean flow
interactions only. Wave-wave and turbulent interactions can play a very important role in the
overall development of fluid flows on the β-plane, and any eventual general theory should aim to
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take them into account. To this end, it would be most interesting in future work to extend phase
space analysis techniques to a study of more strongly nonlinear planetary-scale turbulence.

As a first step, such a study would require the derivation of a Boltzmann equation for fully coupled
planetary waves in the presence of an arbitrary zonal flow. As discussed in [38], there are difficulties
involved in this, as a standard derivation requires knowledge of the planetary wave normal modes,
which for the general disturbance equation (3.6) have never been derived analytically. However,
progress could perhaps be made for scale-separated waves by deriving a fully nonlinear quantum
Boltzmann equation, and carrying out the expansion (3.24) to second order.

38



Chapter 4

Phase space approach II: Numerical
simulation

Never make a calculation until you know the answer.
—John Archibald Wheeler

In this chapter, we introduce a simple wave-mean flow numerical simulation that allows us to test the
validity of the Boltzmann equation derived in Chapter 3. The aim of this chapter is to explore the
phase space behaviour of planetary waves using a series of simple and idealised examples. First, the
linear features of wavepacket propagation on a β-plane are explored and understood. Then, some
more interesting situations involving wave-mean flow interaction are introduced. When we begin
to consider these quasilinear examples, it will be seen that jet formation emerges very naturally as
a result of the motion of wavepackets in phase space.

4.1 Model setup

The essential features of the wave-mean flow problem can be captured by restricting the planetary
wavefield to a single x-wavenumber, kx = k0, but allowing it to be broadband in ky. This is justified
by noting that according to (3.26), the zonal mean flow cannot move planetary wavepackets to
different kx and also that in a wave-mean flow context, their x-position is clearly irrelevant. For
simplicity, in this chapter we also restrict the model to the single layer barotropic case, although
it should be noted that all of the theory presented in the previous section is also applicable to
mixed barotropic / baroclinic flows, which in general will vary with height as well as latitude and
longitude. In Chapter 8, the numerical model described here is extended to two layers, in order to
model the results of the rotating annulus experiment described in the next two chapters.

For barotropic planetary waves, only the y and ky dimensions of phase space are of relevance. In
particular, the equation for phase space velocity vectors (3.26) simplifies to the two components

vy =
2γkxky
|k|4

, Fy =
kx
|k|2

∂γ

∂y
− kx

∂u

∂y
. (4.1)

To investigate equations (3.5) and (3.6) numerically, we write the disturbance vorticity as q′ =
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Re[Q(y)eik0x]. This allows the derivation of the simplified equations

i
∂Q

∂t
= k0 (uQ+ γΨ)− iκQ, Ψ ≡ −

(
k̂2
y + k2

0

)−1
Q (4.2)

and
∂u

∂t
= v′q′ − κu = −k0

2
(Im[Ψ]Re[Q]− Im[Q]Re[Ψ])− κu (4.3)

for waves and mean flow respectively1. We emphasise at this point that k̂y = −i∂y is an operator,
as defined in (3.12), and hence (4.2) and (4.3) make no explicit scale separation assumption.

For all the numerical results presented here, (4.2) and (4.3) were solved using an explicit 4th order
Runge-Kutta method. The code used was designed to halt whenever a) the Rayleigh-Kuo criterion
β−u(y)′′ < 0 for barotropic instability or b) the ‘rule of thumb’ wave-breaking criterion |u′|max > ω/
kx were satisfied2. This ensured that the original physical assumptions behind the model were not
broken during the simulation.

As the simulation described in this chapter is highly idealised and not intended to directly model
real planetary flows, dimensionless units are used throughout this section. For comparison, however,
we note that for a midlatitude slice of Jupiter’s atmosphere, when scaled into units of planetary
rotation period TJ and radius rJ , the mean zonal wind speed is approximately u = 0.01 rJ TJ −1

and the β parameter is β = 5 − 10 rJ −1 TJ
−1, depending on latitude. For all simulations here

we used β = 10, and the maximum zonal wind speeds of barotropically stable jets were of order
max[u] = 0.001. Thus we are investigating a fluid dynamical regime with slightly weaker zonation,
generally, than that observed on the gas giant planets.

4.2 Linear planetary wavepacket motion

Firstly, we study the extremely simple case of a near-infinitesimal wavepacket with no initial zonal
flow and no Ekman damping (κ = 0). Initial disturbance vorticity is

Q = Q0exp
[
il0y − (y − y0)2/(∆y)2

]
, (4.4)

with l0 = k0 = 60, y0 = 0.25 and ∆y = 0.1. In Figure 4.1, the magnitude of the phase space
distribution |Nφ,φ| is plotted above zonal velocity u for a series of timesteps. As can be seen, when
the wavepacket has wavevector such that kxky > 0, it drifts northwards due to the β-effect.

Weak zonal jets also form as a result of this motion. By the barotropic version of the nonacceleration
theorem (3.9)

∂u

∂t
= −∂n

∂t
(4.5)

we see that latitudinal planetary wavepacket motion must always cause jets to form in this way.
For extra clarity, the process is described schematically in Figure 4.2. Even in the quasilinear
examples to follow, (4.5) ensures that the motion of wavepackets and the growth of zonal jets are
always fundamentally linked.

1Prof. C. Jones (private communication) has noted an interesting analogy between equations (4.2) and (4.3), and
those derived previously in an idealised study of deep Jovian convection. See [1] for details.

2See [8], Chapter 11 for a discussion of the wave-breaking criterion.
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Figure 4.1: A planetary wavepacket on a β-plane with positive kx and ky will move northwards. As
group velocity depends on ky, the wavepacket becomes tilted in phase space (top row), although its
volume remains approximately the same. Note the small-amplitude zonal flow (bottom row) induced
by the wavepacket motion.

41



y

n(t1)

n(t2) δn

δt

δu

δt

Figure 4.2: Schematic explanation of the jet formation seen in Figure 4.1. If a planetary wavepacket is
moving northwards such that in time δt = t2− t1, δn = n(t2)−n(t1), then the nonacceleration theorem
(4.5) ensures the zonal flow produced δu will be of the form shown.
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Figure 4.3: In the presence of a shear flow that decreases linearly with latitude (far left), a planetary
wavepacket with positive kx will move toward higher wavenumbers, losing energy to the zonal flow in
the process. Note the slight northward drift of the wavepacket; this is due to the β-effect shown in
Figure 4.1.

The group velocity calculated from (4.1) agrees closely with the observed velocity of the wavepacket
peak (the difference is less than 3% in the example shown). However, note the stretching of
the wavepacket in phase space. This is due to the dispersive nature of the planetary waves, as
determined by (3.2). Essentially, the group velocity vy on the left hand side (in phase space) of the
wavepacket is greater than that on the right — this is shown schematically by the arrows on the
first plot in Figure 4.1.

The second basic case of interest is that of an infinitesimal wavepacket on a linearly sheared zonal
flow, u = −Λ(y − y0). Here, Λ = 0.01, y0 = 0.5 and all other parameters are as in the previous
example. As shown in Figure 4.3, in this situation a wavepacket with kx > 0 is forced towards
higher ky wavenumbers, losing energy to the zonal flow in the process. As β = γ in this example,
the enstrophy of the wavepacket remains constant and hence energy is transferred upscale, while
enstrophy moves downscale. Again, scale-separated predictions match the observed value closely
for this case.
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4.3 Wave-mean flow interactions and jet asymmetry

More interesting and subtle phenomena occur when we allow the wavepacket to be of large enough
amplitude for coupling with the zonal flow, but not wave-breaking, to occur (see Figure 4.4).
Then, we expect it to initially move northwards, with two zonal jets forming due to the non-
acceleration theorem as in the first example. However, as the zonal flow becomes stronger, it
begins to influence wavepacket propagation through a) the shear effect described in the second
example and b) alteration of the basic potential vorticity gradient γ = β − ∂yyu (see equation
(4.1)). As the initial zonal flow gradient in the centre of the channel is negative, the wavepacket is
forced to higher ky wavenumbers, reducing its group velocity and hence the growth rate of the zonal
flow. This process continues until the zonal flow either removes most of the wavepacket energy and
reaches a quasi-steady state, or sharpens to the extent that it becomes barotropically unstable.

For reference, the real space eddy streamfunction ψ′ and (unaveraged) momentum flux quantity
u′v′ at the end of the simulation are plotted in Figure 4.6. These variables were derived after
computation, and are included here simply to illustrate the equivalence of the phase and real space
pictures.
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Figure 4.4: Quasilinear evolution of a wavepacket (Q0 = 0.12, y0 = 0.5, ∆y = 0.05, all other parame-
ters as in first example). Initially, the wavepacket moves as in Figure 4.1, but the zonal shear it produces
modifies its motion as time progresses. By t = 100, the Wigner distribution had become negative-valued
in places.

It is fascinating to note that east-west jet asymmetry occurs regardless of the wavevector k sign
of the initial wavepacket. As expected from (4.1) and shown in Figure 4.5, if the product kxky is
negative, the packet initially moves south, and the initial induced jets are of opposite sign. However,
whatever the sign of kx and ky, jet formation always pushes some wave action to higher absolute
wavenumber values |ky|. Combined with the fact that the wavepacket propagates away from the jet
in a direction dependent on kxky, the result is that in each case, the eastward jet becomes sharper
than the westward one.

This phenomenon can also be explained via a conservation of energy argument; jet formation
increases zonal flow energy, which necessitates energy loss by the wavepacket. As the zonal flow
cannot alter kx, this can only be achieved through transport of wave action to higher absolute
ky. Thus, east-west asymmetry appears to be a quite generic feature of wave-forced jets on the
β-plane that does not require the existence of critical layers for its occurrence. The fundamental
cause of the phenomenon is evidently the chiral (left / right hand) symmetry breaking due to the
fact that we are working in a rotating coordinate frame. This is manifested in the quasigeostrophic
equation (3.1) through the positive-valued β parameter. We note that evidence of quasigeostrophic
jet asymmetry has also been found in several previous studies, including those of Haynes [25] and
Chekhlov et al. [12].

Use of the Wigner distribution allows us to examine in detail the regions where the scale separation
approximation (equation (3.25)) does badly, at any time during the simulation. In Figure 4.7,
for an example quasilinear wavepacket in phase space (initial conditions l0 = k0 = 30, y0 = 0.5,
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Figure 4.5: The same simulation as Figure 4.4, with the initial ky value of the wavepacket reversed.
Initially, the induced jets are of opposite sign, but when east-west asymmetry develops, the eastward
jet becomes the sharper one as in the previous case.

∆y = 0.05 and Q0 = 0.3), the actual time rate of change of the Wigner distribution ∂Nφ,φ/∂t at
t = 50 is plotted alongside the scale-separated estimate of rate of change, which was calculated
numerically for a single timestep according to (3.25). The agreement between the two quantities
is good near the centre of the wavepacket, with serious deviations only beginning to occur in the
lower wavenumber region, where rapid fluctuations in the distribution are occuring (bottom left
of the centre and right hand side plots). It is interesting that for many cases like this one, where
wavepacket – zonal flow scale separation could not be assumed, the scale-separated estimate of
∂Nφ,φ/∂t continued to agree surprisingly well with the real value. In the next section, it will be
seen that scale-seperated estimates of steady-state energy were also found to work well, even when
the assumptions behind them did not strictly apply.

4.4 Steady-state jets

If Ekman damping is present and the planetary wavepacket is continually forced, in many cases
the system will eventually settle into a steady state. To investigate steady-state jet behaviour, we
add a term to the right hand side of equation (4.2) of the form +iκQf (y). This ensures that the
disturbance quantity Q is continually relaxed to the profile Qf , which for the simulation discussed
here is defined as Qf = Q0 exp[il0y − (y − y0)2/(∆y)2]. Such a profile could correspond to a
topographically forced planetary wave, or an (idealised) local region of excitation due to other
processes, such as convection or baroclinic instability.
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Figure 4.6: Real space eddy streamfunction ψ′ = Re[Ψeik0x] (top) and momentum flux u′v′ (bottom)
at t = 500 for the run shown in Figure 4.4. As can be seen, northwards motion of a positive wavepacket
causes a negative eddy momentum flux in real space.

Figure 4.8 shows a plot of wavepacket and zonal jet total kinetic energy as a function of time, for
a simulation with Q0 = 1× 10−1/2 and damping set at κ = 0.01. It can be seen that after a period
of rapid initial wavepacket growth, the zonal flow begins to gain energy by moving wave action
to higher wavenumbers. This causes the total eddy energy, and hence the total system energy, to
slowly decrease until a steady state is reached.

For a small-scale wavepacket, we expect the steady-state zonal velocity to be given by

κu = v′q′ ≈ ∂

∂y

(∫ +∞

−∞
N (y, ky)vydky

)
(4.6)

where vy is the group velocity in the y-direction and N (y, ky), as defined in (3.18), is the projection
of the Wigner distribution (3.15) onto two-dimensional (y, ky) phase space.

Now if the amplitude of the steady-state wavepacket is small, we expect it to be relatively undis-
torted by the zonal jets it produces, and hence approximate the standard form

N (y, ky) = N0e
−2((y−y0)/∆y)2−((ky−l0)∆y)2/2 (4.7)

where N0 is the steady-state peak wavepacket value. Provided that the variation of group velocity
with ky is small over the width of the wavepacket, (4.6) can then be integrated to give an estimate
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Figure 4.7: Magnitude of Wigner distribution |Nφ,φ| (left) plotted alongside actual local time rate of
change ∂Nφ,φ/∂t (center) and scale-separated ∂N/∂t (right) for a generic wavepacket motion problem.
The same contour scale has been used for the second two plots.
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Figure 4.9: Total steady-state jet kinetic energy as a function of scale separation for the relaxation
problem described in the text. Solid and dotted lines show linear analytical predictions and numerical
results, respectively. Eddy forcing amplitudes were Q0 = 1×10−3/2, 1×10−1 and 1×10−1/2 for the left,
centre and right hand side plots respectively. The right hand side plot has fewer data points because
wave-breaking begins to occur at high forcing amplitudes.

of the total kinetic energy of the jet

Ejet ≡
∫
jet

1
2
u2dy (4.8)

≈
16πN 2

0 v
2
y

κ2∆y6

∫ +∞

−∞
(y − y0)2e−4(y−y0)2/∆y2dy (4.9)

≈
π3/2v2

yN 2
0

κ2∆y3
. (4.10)

We expect (4.8) to be valid in the limit of forcing by small amplitude, scale-separated wavepackets.
In Figure 4.9, we have plotted the predictions of (4.8) against numerical jet kinetic energy for
varying values of wavepacket scale seperation, defined as l0/k∆y. Calculations were made for three
different values of forcing amplitude, and each individual simulation was run for 100 times the
relaxation time κ−1 to ensure that a steady state was reached. For the plots shown, the east-west
wavenumber is fixed at a constant value k0 = 40. As can be seen, the final jet energy rapidly
increases to a maximum at around l0/k∆y = 1, and then decreases, as the forcing wavenumber is
increased.

As expected, the numerical results closely match the linear predictions only when wavelength
is small compared to the jet width. In general, the analytical predictions tend to overestimate
total zonal kinetic energy at low values of of l0/k∆y, although the difference is surprisingly low,
considering that scale separation should only strictly apply for the case l0 >> k∆y. In the rightmost
plot of Figure 4.9, the forcing amplitude is great enough for wave breaking to occur in some cases;
this is the reason for the missing data points in the centre of the plot.

4.5 Discussion

In this chapter, the nonlinear interaction between an arbitrary zonal flow and a broadband distri-
bution of planetary waves has been simulated numerically, and compared with the scale-separated
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results derived in Chapter 3. It has been possible to show that jet formation can occur in an
extremely reduced and simple model. Through phase space analysis, it was possible to explain
why and how this jet formation occurs. Furthermore, the phase space view allowed an intuitive
explanation of why the fully developed jets begin to develop significant east-west asymmetry.

There are of course many further experiments that could be carried out with the model presented
here. For example, the effects of small-scale convection could be crudely parameterised by including
a random forcing term in the wave equation (4.2). This would add an extra degree of realism to the
jet formation process. It would also perhaps give insight into the problem of multiple jet formation,
which has not been addressed in this chapter.

In addition, as this model is barotropic, it completely neglects the vertical structure of the jets and
waves. In real atmospheres and in the laboratory experiment described in Chapters 5-7, the vertical
structure of the flow is an important feature of the overall dynamics. In Chapter 8, therefore, the
model is generalised to a two-layer system, in order to simulate the experimental results.

More generally, we note that it is standard in nearly all studies of turbulent flows to take either a real
space view of the dynamics, or a spectral one. Both approaches have their respective advantages
and drawbacks, but phase space analyses, by use of the Wigner distribution, allow us to take both
simultaneously. Hence it is suggested that for many fluid dynamical problems, particularly those
involving a mean flow and a disturbance, phase space views of the dynamics have the potential to
greatly increase our understanding of the systems’ behaviour.
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Chapter 5

Experimental setup

The major difference between a thing that might go wrong and a thing that cannot possibly go wrong
is that when a thing that cannot possibly go wrong goes wrong, it usually turns out to be impossible
to get at or repair.
— Douglas Adams

As was discussed in Chapter 1, the second major part of this project involved the design and
construction of an experiment to reproduce the essential features of planetary-scale turbulence in
the laboratory. In this chapter, the setup of the experiment is described in detail. We begin
with an overview and discussion of the basic apparatus in Section 5.1, also describing some early
work carried out to modify the central cylinder. Next, in Section 5.2, the data acquisition system
is described, with hardware and software components discussed in detail in separate subsections.
Finally, problems that occurred during the commissioning of the experiment, along with their
solutions, are summarised in Section 5.3. The following two chapters are based on a paper [70] that
has been accepted for publication in Physics of Fluids.

5.1 Overview

The basic idea behind the experiment, as discussed in Chapter 1, is to mimic the effects of tropical
heating and polar cooling on a mid-latitude air mass by heating and cooling respectively the outer
and inner sidewalls of an annulus filled with water, or some similar working fluid. Figure 5.1 shows
the general experimental setup; see Figure 5.2 for images of the entire apparatus.

Previous studies have shown that the state of a differentially heated rotating annulus is principally
determined by two dimensionless numbers: the Taylor number

Ta ≡ 4Ω2(b− a)5

ν2d
≈ [2Ω× u]2

[ν∇2u]2
, (5.1)

which is a ratio between Coriolis and viscous effects, and the Hide number

Θ ≡ αgd∆T
Ω2(b− a)2

, (5.2)

which is essentially a ratio between buoyancy and Coriolis effects or ‘thermal Rossby number’ [27].
In the above equations, a and b are the inner and outer cylinder radii, Ω is the rotation rate, ν
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is the viscosity of the working fluid, d is the depth of the annulus, α is the volumetric expansion
coefficient, g is gravitational acceleration and ∆T is the temperature difference between inner and
outer cylinders. Values of all general parameters for the experiment are given in Table 5.1 below1.

Table 5.1: General experimental parameters.

Radius of inner cylinder a 4.5 cm
Radius of outer cylinder b 14.3 cm
Annulus depth (flat) d 26 cm
Annulus mean depth (sloping) d 21.5 cm
Gravitational acceleration g 9.81 m s−2

Sloping boundary angle δ 22◦

Kinematic viscosity of fluid A νA 2.04×10−6 m2s−1

Kinematic viscosity of fluid B νB 1.11×10−6 m2s−1

Volumetric expansion coefficient of fluid A αA 3.16×10−4 K−1

Volumetric expansion coefficient of fluid B αB 3×10−4 K−1

A large body of previous experimental studies (see e.g., [30], [50]) have shown that the transition
to disordered, geostrophically turbulent flow occurs at large Taylor and low Hide numbers. In
this work, an existing annulus was modified by reducing the radius of its inner cylinder and hence
increasing the channel width (b − a). At high rotation rates, this allowed the apparatus to reach
Taylor numbers an order of magnitude greater than have been typically achieved previously.

Chapter 4

Experimental setup

4.1 Overview

As described in Chapter 1, a major part of this project has been the design and construction of
an experiment to simulate the essential features of planetary-scale turbulence in the laboratory.
The basic idea, following [10] and many others, is to mimic the effects of tropical heating and
polar cooling on a mid-latitude air mass by heating and cooling respectively the outer and inner
sidewalls of an annulus filled with water, or some similar working fluid. Figure 4.1 shows the general
experimental setup; see Figure 4.2 for images of the entire apparatus.
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Figure 4.1: 3D and 2D section schematic of the baroclinic turbulence experiment.

26

22◦

28.6 cm

Figure 5.1: Schematic of the experimental apparatus.

1Note that the value given for the volumetric expansion coefficient of fluid B, obtained from the oceanographic
text [62], is only approximate. The accuracy of this quantity was not critical for any of the analyses described in
Chapter 6.
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Figure 4.2: a) The fully assembled baroclinic turbulence experiment. Cooling and heating apparatus
is attached to the base of the rotating turntable; the flow system connects to the annulus via insulated
polyurethane pipes. The three black pillars hold the visualisation equipment in place. b) Close-up of
the experiment interior, with level four illuminated. Note the LED array (top left); its purpose is to
allow the identification of level of illumination by colour.

Two dimensionless numbers are traditionally used to categorise differentially heated rotating annuli
with flat endwalls; the Taylor number

Ta ≡ 4Ω2(b− a)5

ν2d
(4.1)

which is a ratio measuring the relative importance of coriolis and viscous effects, and the thermal
Rossby number

Θ ≡ αgd∆T

Ω2(b− a)2
(4.2)

which measures the relative importance of buoyancy and coriolis forces. These numbers can be
used to construct a two dimensional regime diagram, large regions of which have now been well
investigated. See e.g. Hide et. al. (1975)[10] for a definition of all terms involved.

For this experiment, an existing annulus was modified by reducing the radius of its inner cylinder
and hence increasing its inner-to-outer cylinder radius ratio (b − a). This allowed greater Taylor
numbers and smaller thermal Rossby numbers to be achieved with similar rotation rates. Previous
experimental studies[10][19] indicate that the onset of turbulence1 occurs in baroclinic fluids as the
value of the Taylor number is increased beyond around 107. For an example angular velocity range
of 1 to 3 rad s-1 and a temperature difference range of 3 to 20 K, the parameter ranges of the
original and modified annuli are given in Figure 4.3.

1Given that the very definition of ‘onset of turbulence’ is an issue of contention, it should be realised that this
statement is a very approximate one!

27

LED light 
switching array

Narrow perspex windows

Cooling fansOnboard computer

Figure 5.2: a) Side view photograph of the fully assembled experiment. The digital camera is mounted
on the black steel tripod (not in view). Locations of cooling fans and the Mac mini computer are
indicated. b) Top view photograph of the experiment. Locations of the LED light switching array and
perspex windows are indicated.

The working fluid inside the annulus was seeded with neutral buoyancy pliolite tracer particles of
radius 350µm− 500µm for visualisation purposes. For most experiments, a 82.5% to 17.5% water
/ glycerol mix (fluid A) was chosen as the working fluid, to match the mean density of the tracer
particles, ρ = 1.043 g cm−3. Some experiments were also performed with a NaCl salt solution (fluid
B); in this case density was the same but viscosity was only ν = 1.111 cm2s−1. This allowed a
greater Taylor number and hence a potentially more turbulent flow at the same rotation rate as in
the previous case. However, the salt solution had a corrosive effect on the brass inner and outer
walls of the annulus, and hence was only used for a small number of high rotation rate experiments.

The annulus was placed on a rotating turntable and accurately centered by use of a sighting
telescope. The turntable rotation was powered by an analogue motor, which was controlled via
negative feedback from a tachometer by a DC servo amplifier system. Thermal control of the
annulus was achieved via two closed water circuits, which contained both heating and cooling
elements. A EUROTHERM 900 electronic controller kept the temperature of both circuits constant
by actively controlling the heating and cooling elements, with feedback provided by temperature
sensors placed in each circuit. Typically, fluctuations in measured temperature under steady forcing
conditions were less than ±0.05 K. Filtration units were also included, to keep the water clean and
prevent clogging of the inlet holes in the inner and outer annulus walls. In Figure 5.3, the entire
thermal control system is summarised as a block diagram.
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Figure 5.3: Block diagram of the double water jacket temperature control system.
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5.1.1 Modification of old apparatus

One of the initial tasks of this DPhil was to modify an existing apparatus for the purposes of
investigating highly irregular and turbulent flow regimes. The primary aim of the modification
work was to reduce the radius of the inner cylinder, in order to increase the accessible Taylor
number range, as described in the previous section. More generally, it was also necessary to repair
and upgrade the experimental hardware, much of which was either faulty or obsolete.

Modification of the old annulus required an extensive period of redesign. The original technical
drawings for the annulus were entirely hand drawn, so an initial task was to convert these into a
modern, digital format. The commercial software package Inventor was chosen for this purpose
because of its flexibility and relative ease of use.

Once the structure of the original experiment was fully understood, design of the new inner cylin-
der began. It was decided to keep much of the internal structure, particularly the water inlet
mechanism, the same; the only major change was the removal of O-rings from the cylinder base.
Silicone sealant was initially used there, as it was thought to be a more convenient and robust way
of keeping the structure watertight. However, O-rings proved to be a far more reliable long-term
sealing method; see Section 5.3 for details.

The choice of materials is obviously extremely important in the design of any piece of apparatus. For
this experiment, it was decided to use Bear grade Tufnol (layers of cloth bonded with thermosetting
resin) for most cylinder parts except the external inner cylinder wall. For this, a material with high
thermal conductivity was needed; brass was chosen due to its high availability and low cost. The
wall thickness was chosen to be δx = 5 mm. When combined with the thermal properties of brass
(see Table 5.2), this length scale can be used to derive a characteristic time for heat diffusion

τ =
cpρ(δx)2

σt
= 0.52 s. (5.3)

This value for τ is smaller than the highest rotation period used in the experiments. As timescales
for fluid motion in the annulus at high rotation rate are typically much greater than the rotation
period, variations in boundary temperature caused by eddy heat transport were therefore not
expected to be significant. For the upper boundaries (flat and sloping), perspex was used, to allow
flow visualisation. The design of the upper sloping boundary was made a little more complicated
by optical considerations; this issue is discussed further in the next section.

Table 5.2: Thermal properties of brass (taken from the materials database www.matweb.com).

Density ρ 8.75 g cm3

Thermal conductivity σt 159 W m−1 K
Specific heat capacity cp 0.380 J g−1 K
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Figure 4.4: Technical drawing of the modified inner cylinder for the flat boundary case.

Figure 4.5: Technical drawing of the modified inner cylinder for the sloping boundary case.
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Figure 4.4: Technical drawing of the modified inner cylinder for the flat boundary case.

Figure 4.5: Technical drawing of the modified inner cylinder for the sloping boundary case.

46

Figure 5.5: Technical drawing of the modified inner cylinder for the sloping boundary case.
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5.2 Data acquisition

The problem of acquiring data in fluid dynamics experiments is always a non-trivial one, but for
heat-driven turbulent flows it becomes challenging indeed. Full characterisation of the dynamics
requires velocity and temperature information on a wide range of scales and for even moderate
Reynolds numbers, compromises are usually required.

For velocity field measurement, it was chosen to use flow visualisation via the illumination of
neutrally buoyant tracer particles. This ‘remote sensing’ approach has the great advantage of
allowing characterisation of the 2D dynamics of the full annulus, at multiple levels of the flow,
using a single camera or camcorder. It also allows greater resolution than would be feasible with
other methods, such as in situ measurement.

Temperature measurements of the fluid interior, although desirable, ultimately proved to be unfea-
sible within the budget and time constraints of the project. However, fairly detailed investigations
into possible temperature field acquisition methods were made over the course of the DPhil. They
are outlined in Section 5.2.3 for the benefit of future experimental research.

5.2.1 Hardware

Given the choice of flow visualisation as the main method of data acquisition, the correct choice
of camcorder and storage technology was clearly very important. The existing experimental setup
used a Cohu CCD analogue camera with standard PAL output. A rotating slip ring at the top of
the turntable assembly was used to transfer the analogue signal into the laboratory frame. From
there the signal passed to a television and VHS video recorder where the program DigImage was
used to convert the data into digital format for velocity field analysis.

This arrangement was judged to be impractical for a number of reasons. First, much of the
technology in use was obsolete, making future repair work or partial modification an extremely
difficult prospect. Second, the use of analogue video resulted in an increase of noise due to both
the slip-rings and the analogue-digital conversion process. Finally, the digitisation and velocity
field extraction process was extremely slow (around 20 minutes for a single timestep), making it
ill-suited for analysis of turbulent flows over time.

It was decided to use a radically different setup for video acquisition. The Cohu analogue camera
was replaced with a Sony DCR-HC44 MiniDV camcorder, with resolution of 720 × 576 pixels. A
Mac mini computer was installed on the turntable and used to control the camcorder directly, with
FireWire used to transfer the video data. The computer’s inbuilt wireless ethernet connection was
then used to communicate with a Windows PC on a desk nearby. This allowed a) wireless control
of data acquisition at arbitrary rotation rates, b) remote real-time visualisation of the flow and c)
quick, reliable transfer of data to desktop PC for further processing at the end of each experimental
run. Furthermore, the possibility of increased noise due to slip-ring interference was eliminated.

As the refractive indices of air, perspex and the working fluid are different (see Table 5.3), light
rays travelling upwards through an upper perspex boundary with a sloping bottom and flat top
would be refracted, resulting in a distorted image at the camera. For this reason, the perspex lid
was machined with a slope of δu = 3.5◦ on its upper surface. The angle δu was calculated such that
to first order, rays travelling vertically from mid-depth and mid-channel to camera height would
converge on a central point. Deviations from this approximation were checked by photographing
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Figure 4.5: Schematic of the data acquisition setup for the baroclinic annulus experiment.

quick, reliable transfer of data to desktop PC for further processing at the end of each experimental
run. Furthermore, the possibility of increased noise due to slip-ring interference was eliminated.

4.3.2 Software

For frame-selective acquisition of the video data via Firewire on the Mac Mini computer, the
versatile shareware program BTV Pro was used. Virtual Network Client (VNC) and Secure Shell
(ssh) were used to remotely control the Mac Mini and transfer video files — freeware versions of
both of these programs are available for download on the Internet. Video files were first saved in
low-compression DV format and then converted to sequences of 256 grayscale portable network
graphics (.png) format images. Typically, it was only necessary to convert video to images at a
rate of one frame per second, which greatly reduced the total storage space needed.

Raw images and movies of the flow are excellent for getting an overall view of the dynamics and
identifying qualitative features of interest, but for more quantitative analysis, some method for
mapping images to velocity fields is required. A freely available software package developed by
A. Fincham and others, CIV, was chosen for this purpose[7]. In brief, it works by measuring
the rotation, dilation, shear and translation of arbitrary dye or tracer patterns in a flow. More
conventional particle imaging velocimetry (PIV) techniques track individual tracer particles in the
flow by correlating sequences of images. The two methods are contrasted in Figure 4.6.

The main disadvantages of PIV are the high noise levels associated with particle tracking and an
inability to accurately observe divergent regions of the fluid2. CIV does not suffer from either of
these drawbacks. In addition, velocity field resolution is much less dependent on the choice of tracer
material. In many circumstances it effectively becomes dependent on the resolution of the camera
itself.

Finally, for all higher level diagnostics on the experimental data, the commercial scientific software
2By definition, tracer particles will move away from a divergent region. In flows optimised for CIV analysis the

particle density is much higher, so this is rarely as big a problem as for PIV.
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Figure 5.6: Flow diagram indicating the data acquisition hardware and software setup.

a checkerboard pattern in the tank at different depths (see Figure 5.7). The maximum distortion
error at the inner and outer walls was a few pixels only, which was judged sufficiently small to be
neglected in the analysis.

Table 5.3: Optical properties of materials relevant to the sloping boundary visualisation problem.

Refractive index of air nair 1.001
Refractive index of perspex np 1.492
Refractive index of working fluid A nA 1.357
Refractive index of working fluid B nB 1.341
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Figure 5.7: Images at mid-depth of the black and white rings used for calibrating the digital camera
with a) flat and b) sloping upper boundary present. The superimposed red lines correspond to edges of
the radial black stripes, as recognised by the Matlab edge-finding algorithm. c) Plot of total pixel inten-
sity as a function of radius for the flat boundary image with edge-finding superimposed. d) Calibration
curves for the flat and sloping boundary images.
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Light level switching circuit

To estimate the relative importance of barotropic and baroclinic effects, it is necessary to extract
velocity fields at different levels in the fluid. The more levels observed, the greater the vertical
resolution that can be achieved. As can be seen from Figure 5.1, the experimental apparatus
contained a total of five narrow perspex windows along the entire diameter of the outer cylinder at
different height levels. Rings of six 50W halogen lamps behind each window provided illumination
in the 2D plane. As the lamps were enclosed, a cooling mechanism was necessary; this was provided
by three electric fans mounted on the outer shell of the experimental apparatus (see Figure 5.2).

Early in the DPhil project, a switchbox was constructed to allow the level of illumination to be
set manually. However, it was later decided to build a oscillation circuit (Figure 5.8), in order to
automate the level switching process and hence allow for a quasi-3D picture of the flow dynamics.
The circuit incorporated a multicolour LED array (also marked in Figure 5.2) that was placed
in view of the camcorder, effectively tagging each image with a unique level identification. An
algorithm was then written in Matlab that automatically sorted flow images by level, based on the
total pixel intensity within the region of the relevant LED.

Figure 4.7: Example raw .png image from an experiment with flat endwalls. Brightness and contrast
has been increased for clarity. Note the level indicator LED in the top-left corner.

arguments[2].

The second possible approach would be to utilise particle imaging thermometry (PIT) to produce
2D maps of temperature at each of the five light levels. PIT is a relatively new technique that uses
colour-changing liquid crystals as tracer particles, producing images whose colour is proportional to
the temperature of the fluid. This has the advantage of potentially allowing acquisition (with light
level switching) of full 3D maps of temperature, which, when combined with velocity information,
would give an extremely comprehensive picture of the flow dynamics. The major disadvantages of
this approach would be cost (around 250 pounds for a six month supply of LCD tracer particles)
and the risk involved with using a relatively unknown technology.
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Figure 4.8: Circuit diagram of the light level switching circuit constructed by G. A. Clack and designed
by the author. The outputs ‘LL1’ etc. from the HEF4017B Johnson counter are TTL logic switches for
the lamp arrays and associated LEDs.
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Figure 5.8: Circuit diagram of the light level switching circuit designed by the author and constructed
by G. A. Clack. The outputs ‘LL1’ etc. from the HEF4017B Johnson counter are TTL logic switches
for the lamp arrays and associated LEDs.

5.2.2 Software

For frame-selective acquisition of the video data via FireWire on the Mac mini computer, the
versatile shareware program BTV Pro was used. Virtual Network Client (VNC) and Secure Shell
(ssh) were used to remotely control the Mac mini and transfer video files, respectively — freeware
versions of both of these programs are available for download on the internet. Video files were first
saved in low-compression DV format and then converted to sequences of 256 grayscale portable
network graphics (.png) format images. Typically, it was only necessary to convert video to images
at a rate of one frame per second, which greatly reduced the total storage space needed.

Raw images and movies of the flow are excellent for getting an overall view of the dynamics and
identifying qualitative features of interest, but for more quantitative analysis, some method for
mapping images to velocity fields is required. A freely available software package called Correlation
Imaging Velocimetry (CIV) was chosen for this purpose [19]. In brief, CIV works by measuring
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the translation, rotation, dilation and shear of arbitrary dye or tracer patterns in a flow. More
conventional particle tracking imaging velocimetry (PTIV) techniques simply track individual tracer
particles in the flow. The two methods are contrasted in Figure 5.9.

a) b)

Figure 5.9: a) PTIV tracks tracer particles in order to build a picture of the Lagrangian velocity
field. b) During the course of a flows evolution, arbitrary patterns will continuously undergo affine
transformations (shown decomposed for clarity). CIV uses image recognition techniques to convert the
motion of these patterns to Eulerian velocity fields.

The main disadvantages of PTIV are the high noise levels associated with particle tracking and
an inability to accurately observe divergent regions of the fluid2. CIV does not suffer from either
of these drawbacks. In addition, velocity field resolution is much less dependent on the choice of
tracer material. In many circumstances it effectively becomes dependent on the resolution of the
camera itself.

The CIV algorithm is iterative, with several steps needed before accurate high resolution velocity
fields can be derived. After an initial low resolution image correlation using translation only
(CIV1), false velocity vectors are removed from the data according to user-defined criteria, such as
degree of correlation. The velocity fields are then interpolated onto a regular grid and the full CIV
analysis is performed, usually at higher resolution, with the initial data used by the algorithm as
a first estimate. After further false vector removal, the data is then interpolated onto a polar grid.
The entire process is summarised as a block diagram in Figure 5.10. As an example, Figure 5.11
shows images and plots of various quantities produced at different steps in the process for a typical
experimental dataset.

As the digital camcorder used a MiniDV format, the raw video data was outputted in a partially
compressed form. The error introduced by this was tested in the following way. Raw, uncompressed
demonstration flow images (see Figure 5.12) were taken from the CIV website3 and artificially
compressed in Matlab using the same Discrete Cosine Transform algorithm (DCT) that is used for
the MiniDV video format.

Both original and compressed images were then processed in CIV, and the resulting kinetic energy
fields compared (see Figure 5.13). As can be seen, the two fields are qualitatively very similar.
However, the compressed image clearly has an increased noise component at small scales.

To investigate the dependence of the noise component on scale, the two-dimensional Fourier power
spectra of the velocity fields were also computed (also in Figure 5.13). One-dimensional power
spectra for both cases were then derived in a standard way by binning data points according
to their absolute wavenumber |k|. The results are plotted in Figure 5.14. As can be seen, the
two quantities match extremely closely until around |k| = 0.1 rad px−1. In general, compression
artificially increases kinetic energy at high wavenumbers by adding small-scale noise to the images.

2By definition, tracer particles will move away from a divergent region. In flows optimised for CIV analysis the
particle density is much higher, so this is rarely as big a problem as for PTIV.

3http://www.civproject.org
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Figure 5.10: Block diagram of the main CIV algorithm.

As a result of this investigation, it was decided to limit spectral diagnostics of experimental data
to modes with wavenumber greater than this value (in rad px−1), where the compression error
reaches around 10%. As will be seen in Chapter 6, this did not affect any of the main conclusions
of our analysis.

Finally, for all higher level diagnostics on the experimental data, the commercial scientific software
Matlab was used. Specific algorithms developed for experimental data processing are described in
more detail in the next chapter.

5.2.3 Temperature data

From a theoretical point of view, temperature measurements of the interior flow in this experiment
are extremely useful, as knowledge of velocity and temperature fields simultaneously allows one to
derive potential vorticity. As described in Chapter 2, knowledge of the potential vorticity field can
often give great insight into the dynamics of the fluid.

Two different methods were attempted for the acquisition of temperature information in the exper-
iment. In the end, partly due to time and financial constraints, neither method proved accurate or
reliable enough to provide useful information on the flow dynamics. The progress made is briefly
described here, on the premise that it may provide a useful starting point for future experimental
research.

The first and most ambitious method attempted involved the use of particle imaging thermome-
try (PIT) [14]. PIT is a technique whereby thermochromic liquid crystals are encapsulated in a
transparent, neutrally buoyant polymer and then suspended in the fluid. The colour of the liquid
crystals changes with temperature over a preset range. This allows a calibrated colour camera to
visualise the local temperature of the illuminated region of the fluid.

PIT has the great advantage of providing two-dimensional maps of temperature at multiple levels,
at potentially even higher resolution than the velocity fields derived by CIV. However, the technique
requires high quality video equipment to obtain low-noise temperature data. Extremely bright light
sources, such as ultra-bright LED arrays, are also required in order to obtain good quality results.

As a preliminary study, a small sample of thermochromic tracer particles was purchased from
Hallcrest4 and tested in a relatively high temperature difference (∆T = 6K) experiment. The
quoted colour range of the particles was 10K, centred on 293K, and characteristic particle size was
of order 50-100 µm. An example image produced from this experiment, with fluid illumination at
mid depth, is shown in Figure 5.15.

As can be seen, there is no discernable large-scale variation of colour with radius. In general it was
4Product details are available at http://www.hallcrest.com/.
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Figure 5.11: a) Raw image at mid-depth, b) CIV1 c) CIV2 velocity fields and d) final vorticity field
in polar coordinates for data from a high rotation rate, flat boundary experiment. In b) and c), blue
velocity vectors are well-correlated, green ones have average correlation, and pink ones are false vectors.

found that the halogen lamps did not provide sufficient illumination for the liquid crystals, with the
result that any physical variations in tracer particle colour were below the noise threshold of the
digital camcorder. Replacing the lighting and visualisation system was not judged possible within
the budget of the DPhil, and hence the PIT method was reluctantly abandoned.

The second temperature acquisition method attempted involved placing thermocouples directly in
the fluid. There are several disadvantages to this approach. First, the electronics required for
each thermocouple means that in practice, the fluid temperature can only be recorded at a small
number of points. Second, thermocouples must be connected to wires, and the presence of wires in
the working fluid may affect its motion.

When the thermocouples were tested in the experiment, it was found that the flow was slightly
altered by the presence of wires, although the effect was relatively slight. More seriously, the
thermocouples were found to be corroding, and gave noisy, unpredictable signals for only a few
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Figure 5.12: Uncompressed image downloaded from CIV website for test purposes, with derived CIV2
velocity field superimposed.

hours before shutting down completely. Many attempts were made to fix this problem; the metal
walls of the annulus were electrically grounded, more robust thermocouple wire was used, and finally
the wire was coated in vacuum-grade protective varnish. Unfortunately none of these alterations
increased the reliability and accuracy of the thermocouples to a satisfactory degree.

Due to these two problems it was decided not to use thermocouples to measure the interior fluid
temperature, although some thermocouples were still used to check the temperature of the inner
and outer annuls walls. In general, PIT appears have much greater potential as a method for
measuring the temperature of the fluid interior, as long as accurate calibration of the colour images
is possible. If temperature measurements are desired in future experimental work, it is therefore
recommended that this method be pursued first.

5.3 Experimental problems

Throughout the course of the DPhil, experimental progress was severely impeded by equipment
failure. Both the annulus and the rotating rig itself required fairly extensive repair, the details of
which are summarised for future reference in this section.

Problems with the annulus were primarily due to a combination of equipment age and poor original
design. Concerning the latter, a most serious problem involved the use of diametral O-ring seals
in the outer water jacket of the annulus, which were inadequate given the large outer wall radius
(14.5 cm). The apparatus had clearly failed several times in the past, as multiple layers of silicone
sealant had been applied to the outside of the seal, presumably in an unsuccessful attempt to
halt the leakage. After several months of experimentation, a solution was proposed whereby new
O-rings were placed in a different location in the wall that allowed for compressive sealing. All
silicone was removed and Apiezon T grease was applied to increase the reliability of the seal. The
second annulus leakage problem occurred in the newly manufactured inner cylinder. The reasons
for the leak were similar; silicone was used instead of O-rings as a sealant. The solution involved a
chamfered aluminium bracket fitted around the base of the cylinder, as shown in Figure 5.16.
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Figure 5.13: a) Kinetic energy in real space and b) spectral space for the uncompressed CIV test
images. c), d) The same plots for images compressed using the DCT algorithm.

The second set of experimental problems involved equipment on the turntable itself. Some of these
were minor: both water filters and one of the ceramic heaters in the thermal control circuit re-
quired replacement, the Eurotherm temperature controller caused oscillations and required manual
calibration, and the camcorder mount was unstable and needed modification. A most persistent
problem was non-constant rotation of the turntable, which caused a rapid ‘wobble’ of the zonal
mean flow velocity. Extensive work was carried out in an attempt to correct this. First, the
experimental annulus was leveled and centred using a spirit gauge and tripod-mounted sighting
telescope. Second, the turntable was removed from its base with the use of a crane and the bear-
ings and brushes of the DC motor were replaced. Electrical repair of the power slip-ring was also
carried out at this time by technical staff.

Unfortunately neither of these attempted solutions completely removed the oscillations. In a final
attempt to correct the problem, a load sensor placed underneath one support leg of the rotating rig.
By this method, it was determined that the mass distribution of equipment on the table was non-
uniform. This problem was corrected by bolting various lead counterweights around the turntable
perimeter, until an even mass distribution was achieved.

After all these measures, only very small oscillations at high rotation rate still remained. These
oscillations were high frequency and low amplitude in comparison to the observed fluid motion in
the annulus, and it was judged that their effect on the dynamics would be extremely small. Indeed,
in CIV-derived velocity fields the oscillations could not be distinguished from the background noise
due to other effects, such as the non-optimal lighting system, and the camcorder data compression
discussed in Section 5.2. In the analysis of the experimental data in Chapter 6, therefore, their
effects are neglected.
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Figure 5.14: One-dimensional kinetic energy spectra for velocity fields derived from compressed (black
line) and uncompressed (red line) images.

5.4 Discussion

In this chapter, a comprehensive description of the experimental setup was given. As the data ac-
qusition system involved new technology and methods, particular attention was paid to describing
it in detail. A brief summary was also given of the problems encountered during the setup and cali-
bration phase of the experimental project. Finally, some research performed on the implementation
of a multi-level two-dimensional temperature acquisition system was also described.

The apparatus described here is innovative in many respects. The flow visualisation setup in par-
ticular proved extremely successful, validating the use of digital camcorders and wireless technology
in rotating fluid dynamics experiments. Also, the combination of simple electronics and an image
sorting algorithm allowed for the automated reconstruction of effectively four-dimensional velocity
fields from the raw experimental data.

However, there are still many ways in which this experimental setup could be improved in the future.
Use of an industrial FireWire camera, for example, would allow more flexible data collection, and
would eliminate the problems caused by video compression. Replacement of the halogen lamps with
an array of ultra-bright LEDs would also simplify the setup, as it would remove the need for the
exterior cooling fans. Furthermore, the combination of a high quality camera with LED lighting
would make it much easier to create a reliable particle imaging thermometry system in the future.
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Figure 5.15: Image of working fluid at mid-depth with PIT tracers added, for an experiment with
Ω = 2 rad s−1 and ∆T = 6K. Image brightness has been increased for clarity.

Annulus baseInner cylinder
cold water jacket

Large diameter
O-ring

Bottom boundary (flat)

Aluminium bracket

Figure 5.16: Schematic of the double seal O-ring designed and installed with the help of G. A. Clack.

66



Chapter 6

Experimental results

In this chapter, the main experimental results of this DPhil are presented. In the first section,
the entire set of experiments performed is summarised in terms of a regime diagram, and general
flow features and properties are discussed. Next, a series of increasingly sophisticated analyses are
performed on a selection of the most interesting datasets, with the central aim of gaining insight
into the turbulent jet formation process.

6.1 General flow features

As was discussed in Chapter 5, the experiments presented here were designed to investigate a
parameter space region of high Taylor and low Hide number. The locations in parameter space
of all experiments are shown in Figure 6.1. Also shown, for comparison, is a regime diagram
from a previous laboratory study by Hignett et al., performed at lower Taylor number [30]. In
this investigation, rotation rate and temperature difference were varied from Ω = 0.65 rad s−1 to
3.9 rad s−1 and ∆T = 1K to 4K to cover the parameter space range indicated. For reference, the
Taylor and Hide numbers for all Ω and ∆T combinations studied are also given in Tables 6.1 and
6.1.

Ω[s−1]/∆T [K] 0.65 1.3 2.6 3.9 3.9*
1 1.412 ×107 5.649 ×107 2.260 ×108 - -
2 1.412 ×107 5.649 ×107 2.260 ×108 5.084×108 1.714×109

4 1.412 ×107 5.649 ×107 2.260 ×108 5.084×108 1.714×109

Table 6.1: Taylor number as a function of rotation rate and temperature difference. The asterisk in
the final column indicates ‘fluid B’ experiments.

Ω[s−1]/∆T [K] 0.65 1.3 2.6 3.9 3.9*
1 0.199 0.050 0.012 - -
2 0.397 0.099 0.025 0.011 0.011
4 0.794 0.199 0.050 0.022 0.022

Table 6.2: Hide number as a function of rotation rate and temperature difference. The asterisk in the
final column indicates ‘fluid B’ experiments.
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Figure 6.1: Logarithmic parameter space diagram showing the position of all experiments conducted
as a function of Taylor and Hide number (T vs. Θ). Also shown in black is a regime diagram derived
from a previous experimental study (see [30] for details).

As can be seen, only a total of four lower viscosity ‘fluid B’ experiments (one flat and one sloping
experiment at two points in parameter space) were carried out. The reason for this was that the
salt contained in fluid B slowly corroded the metal annulus walls over time, making extensive data
collection extremely impractical.

As the principal interest of this investigation was the (statistically) steady-state properties of the
flow, each experiment was run for two hours, with data collection occurring only in the second
hour. The Ekman spinup time, defined as τEk = h/

√
2νΩ, varies between 160 and 65 seconds

for the experiments presented here; thus a minimum of 22 spinup times (40 for the high rotation
rate experiments) passed before data collection in each case. Visual inspection of mid-level streak
images during data collection typically revealed little qualitative change in the flow fields after half
an hour of run time.

As a further test of flow stationarity, total energy and enstrophy were plotted as a function of time
for each dataset after CIV processing. It was found that in all cases, these quantities did not exhibt
any significant monotonic trend over the period observed. An example plot, for a flat boundary
experiment with rotation rate Ω = 3.9 rad s−1 and forcing ∆T = 2K, is shown in Figure 6.2.
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Figure 6.2: Total energy (top) and enstrophy (bottom) at five different depths for a high Taylor
number flat boundary experiment. The codes ‘LL1’ etc. correspond to the light levels indicated in
Figure 5.1.

To give a rough idea of the qualitative flow features before CIV analysis, streak images of the
experiment at mid-depth were produced by time-averaging sets of raw images outputted from
the digital camcorder. Figure 6.3 shows such images of the flow for flat and sloping boundary
experiments at a) low and b) high rotation rates. Each image was taken after approximately 30
minutes of evolution time, with an averaging time of 20 seconds.

The top streak images in Figure 6.3 are from experiments where the rotation rate is low enough
for the flow to be chaotic rather than fully turbulent, at least in the flat boundary case. There, the
flow appears to be in a structurally vacillating ‘wavenumber 4’ state (4SV), which is in agreement
with the parameter space diagram recorded in [30] (Figure 6.1). In the sloping case, a wavy jet
close to the outer boundary is apparent, with the inner half of the channel dominated by a chain
of moving vortices.

The bottom streak images in Figure 6.3 show more complicated behaviour. The flows for both
are fairly rapidly fluctuating; the flat boundary case, in particular, exhibits varying radial and
azimuthal eddy motion, with no single wavenumber dominating.

In the sloping case, the large-scale domain spanning eddies are replaced by apparent wave-like
motion and weak zonal jets. It is interesting to note that the bottom-right image in Figure 6.3
is somewhat reminiscent of the streak images reported previously in a quite different setup [13];
there, a rotating parabolic dish was heated from below and allowed to cool convectively at its upper
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surface. However, little quantitative velocity field information was derived for that experiment,
making further comparison difficult.

Figure 6.4 shows CIV-derived contour plots of near-instantaneous vertical vorticity component
ζ = r−1 (∂r(ruθ)− ∂θur) at three different depths in the fluid, for experiments with the same pa-
rameters as those displayed in Figure 6.3. Three-dimensional visualisation of this type helps to
highlight the dramatic difference between the flow in the flat and sloping boundary cases — note
in particular the pronounced wavelike appearance of the latter plots (bottom) in Figure 6.4. An-
imations of the vorticity field show that the wave crests are travelling westward, as expected for
disturbances that are qualitatively similar to atmospheric planetary waves. In Section 6.2, we dis-
cuss a temporal spectral analysis of the velocity field data that shows that to a large extent, these
flows are indeed dominated by wavelike motion.
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a)

b)

Figure 6.3: Streak image comparison of the mid-depth flow in flat (left) and sloping (right) boundary
cases for low rotation rate Ω = 1.3 rad s−1 (top) and high rotation rate Ω = 3.9 rad s−1 (bottom).
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Figure 6.4: Multilevel snapshot of vertical vorticity component at levels 1, 3 and 5, time t = 3600s
for flat boundary (left) and sloping boundary (right) experiments with Ω = 1.3 rad s−1 (top) Ω = 3.9
rad s−1 (bottom) and ∆T = 2K in all cases. Note that in the slow flat boundary experiment (top left),
azimuthal wavenumber 3, not 4, is dominant. The data there is from a different experimental run to
the streak image in Figure 6.3, although the temperature difference and rotation rate in both cases was
identical. This demonstrates the hysteretic properties of the system, as observed previously by other
researchers (e.g., [28] [29]).
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Figure 6.5: Relevant length scales in units of channel width (b− a) as a function of Taylor number for
a) ∆T = 1K, b) ∆T = 2K and c) ∆T = 4K sloping boundary runs.

A selection of relevant length scales as a function of Taylor number for all the sloping boundary
experiments is plotted in Figure 6.5. The Rhines scale (2.59) was calculated using a time and
volume averaged value for the root mean square flow speed U . The jet scale was crudely estimated
by Fourier transforming the zonal and temporal mean of the azimuthal velocity uθ in radius. The
location of the peak of the resulting power spectrum was then taken to be the characteristic jet
wavenumber, with jet scale the inverse Ljet = π/kjet.

The first internal deformation radius in the experiments is defined as

Ld =
√
αgd∆Tz

Ω
(6.1)

where ∆Tz is the vertical temperature difference. Although we do not have internal temperature
information for these experiments, an upper bound on the deformation radius Lmax > Ld can be
derived by replacing ∆Tz in (6.1) with the imposed horizontal temperature gradient ∆T . This
quantity is also plotted in Figure 6.5.

Note that this ‘horizontal deformation scale’ decreases with Taylor number, becoming less than
1/10th of the channel width for the highest rotation rate experiments. The Rhines scale for the
sloping boundary runs also decreases with Taylor number, primarily because β increases with Ω.
Neither length scales are good quantitative predictors for the observed jet width, although note
that for Taylor numbers greater than T ≈ 2 × 108 for the ∆T = 2K runs, all three scales are at
least decreasing in the same direction.

In the ∆T = 1K experiments, the observed flow was generally extremely weak. A large number of
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particles would generally sink to the bottom or rise to the top of the annulus before data acquisition
began, increasing the errors on the CIV-derived velocity fields. In addition, zonal jet formation
was not conclusively observed. It is most likely that Ekman and viscous damping dominated over
nonlinear effects in those cases, suppressing the jet formation process. In the ∆T = 4K experiments,
acquisition of high-quality data was possible. However, even at high rotation rates multiple zonal
jets did not usually form (the one exception to this was a high rotation fluid B experiment — see
Figure 6.8). It was only in the ∆T = 2K experiments that multiple zonation was conclusively
observed.

In Figures 6.6, 6.7 and 6.8, instantaneous mid-depth vorticity ζ (left) and zonal velocity uθ = rθ̇
(right) after 1.5 hours run time are plotted for a range of 2K and 4K temperature difference
experiments.

Several important flow features may be seen from these plots. Firstly, in both flat and sloping
boundary experiments, the scale of spatial variations in both fields tends to decrease with rotation
rate. In the flat boundary experiments, the azimuthal wavenumber m = 3 flow that is dominant at
low rotation rates becomes replaced by an unstructured flow, with no evidence of coherent zonal
structure formation found in any of the cases.

In the sloping boundary experiments, however, alternating jets appear at higher rotation rates; the
‘fluid B’ experiments, in particular (Figure 6.8), have a clear 2-3 jet structure. It is most interesting
to note that regions where the jets are strong tend to correspond to those where wave activity, as
visible in the instantaneous vorticity fields, is highest. Also clearly apparent is the increase in
wavenumber (both azimuthal and radial) of the vorticity fields with rotation. These issues are
examined further in the next two sections.

The velocity and vorticity snapshots are from flows that were approximately in a statistically steady
state. It is therefore also of interest to examine time-averaged zonal velocity profiles. In Figures
6.9 and 6.10, time and zonal-averaged zonal velocity uθ is plotted as a function of r and z for a
variety of cases. All time averages performed in this chapter and the next involved from 100 to
220 instantaneous fields, depending on the temperature difference. Larger temperature differences
resulted in greater horizontal velocities, and hence required more rapid sampling. In every case,
the total averaging time was one hour.

As can be seen, the low rotation rate, flat boundary zonal velocity profiles show a strongly vertically
sheared zonal flow. This is of course the thermal windshear, predicted from geostrophic arguments
(recall the discussion of Chapters 1 and 2), which causes eddy growth in the annulus when it is
baroclinically unstable. Note, however, that this shear is weakened in the centre of the channel.
This is due to nonlinear interaction with the finite amplitude eddies. As all the energy of the eddies
is ultimately derived from the vertical shear of the zonal flow, it is inevitable from a conservation
of energy argument that they must weaken it as they grow.

As rotation rate is increased, the effect of the eddies becomes more and more important. In the
highest Taylor number case (bottom right of Figure 6.9), the now turbulent eddy motion has
distorted the zonal flow profile to such an extent that it is mainly vertically coherent (barotropic).

The sloping cases are generally different, although they appear qualitatively similar at low rotation
rates. As expected from the mid-level snapshots, there is a noticeable trend towards multiple jet
formation as rotation rate is increased. Interestingly, however, even at the highest rotation rates,
the jets produced still have a strong baroclinic element. We note that this was also found to be the
case in the simplified numerical simulations of the experiment (see Chapter 8).
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Figure 6.6: Snapshots of mid-depth vorticity (left) and zonal velocity (right) for flat boundary exper-
iments with constant temperature difference ∆T = 2K. Rotation rate is Ω = 0.65, 1.3 and 3.9 rad s−1,
increasing from top to bottom.
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Figure 6.7: Snapshots of mid-depth vorticity (left) and zonal velocity (right) for sloping boundary
experiments with constant temperature difference ∆T = 2K. Rotation rate is Ω = 0.65, 1.3 and 3.9 rad
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Figure 6.8: Snapshots of mid-depth vorticity (left) and zonal velocity (right) for a selection of low
viscosity ‘fluid B’ experiments at high rotation rate Ω = 3.9 rad s−1. From top to bottom they are: flat
boundary ∆T = 2K, sloping boundary ∆T = 2K and sloping boundary ∆T = 4K.
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6.1.1 Eddy-mean flow interaction

As discussed in Chapter 3, the effect of eddies, be they wavelike or turbulent, on zonal mean
quantities, can be written in terms of the averaged correlation of the various eddy fields. In this
section we examine the eddy (angular) momentum flux, 〈u′ru′θ〉, and temperature flux, 〈u′rT ′〉 for
the experimental data, and compare them to the observed time-averaged zonal flow profiles.

Due to the problems discussed in Chapter 5, temperature information could only be derived in
an indirect way via the quasigeostrophic approximation. First, streamfunction ψ′ was derived
numerically from the eddy vorticity fields, by computing the inverse laplacian ψ′ = ∇−2ζ ′ with
boundary conditions ψ′|r=a,b = 0. The calculation was performed using standard matrix inversion
methods in the Matlab software package. For further details of the calculation, see Appendix B.

To relate T ′ to ψ′, the definition of geostrophic streamfunction ψ′ ≡ p′/2Ωρ0 can be used. When
combined with the hydrostatic approximation dp′ = −gρ′dz and the linearised temperature-density
relationship ρ′ = −ρ0αT

′, this allows us to write the approximate relationship between eddy tem-
perature and streamfunction as

T ′ = +
2Ω
gα

∂ψ′

∂z
. (6.2)

In Figure 6.11, time and zonal averaged eddy heat and momentum fluxes are plotted beside the
time-averaged zonal flow for a selection of the most interesting experiments. The fluxes were
calculated at mid-depth for these plots. Interestingly, however, the differences between mid-depth
and vertically averaged values were small in most cases.

First, note that for all experiments the eddy heat flux 〈u′rT ′〉 is negative, indicating that the
eddies are always transporting heat from larger to smaller radii. This is expected, as the radial
temperature gradient is the only energy source in the experiment. Indeed, the baroclinic instability
can be regarded as a heat engine, creating jet and eddy motion through the conversion of thermal
to kinetic energy.

In all of the sloping boundary cases (Figures 6.11(b-e)), the eddy momentum flux 〈u′ru′θ〉 is con-
verging onto same-sign zonal flow, indicating that barotropic eddy processes are forcing the jet in
each case. However, in Figure 6.11(a) (the flat boundary case) positive eddy momentum flux is
converging on a negative zonal jet. This is an indication that the zonal flow may be losing kinetic
energy to the eddies there.

In flows with significant vertical and horizontal variation such as those analysed here, assessment
of the net exchange of total energy between eddies and zonal flow is generally non-trivial [46]. To
gain further clues as to the nature of jet-eddy interaction, however, we can use the Rayleigh-Kuo
instability criterion

β − ∂r
(
r−1∂r

(
ruθ

θz
))
≤ 0 (6.3)

where uθ
θz is the vertically and zonally averaged velocity, to assess whether or not the purely

barotropic zonal mode is dynamically unstable.

In the course of the experimental analysis, the Rayleigh-Kuo criterion for barotropic instability
was analysed for all datasets. It was found that it was usually satisfied in the high rotation
rate flat boundary experiments, but never in the sloping ones. It is judged likely, therefore, that
the positive momentum flux convergence seen in Figure 6.11(a) is due to barotropic (or mixed
barotropic / baroclinic) instability of the negative zonal flow.
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More sophisticated eddy-mean analyses of flows with non-trivial vertical structure make use of the
of the Eliassen-Palm (E-P) flux formalism described in Chapter 3 [2]. In a cylindrical coordinate
system, with increasing radius equivalent to a ‘southward’ direction, the E-P flux divergence is
defined as

∇m · F = r−1∂r (rFr) + ∂zFz

= −r−1∂r

(
r〈u′ru′θ〉

)
− ∂z

(
(f0/dzT0)〈u′rT ′〉

)
(6.4)

Unfortunately, there is an unknown quantity in (6.4) — the vertical temperature gradient dzT0. As
was discussed in Chapter 5, it ultimately proved impossible to acquire any temperature information
in the experiments. Therefore, only a crude estimate of dzT0 based on the mean imposed horizontal
temperature gradient ∆T/(b− a) is possible here.

In Figures 6.13 and 6.14, for flat and sloping boundary experiments, the time and zonal averaged
E-P flux divergence ∇m · F is plotted as a function of r and z, with the zonal mean profile uθ
superimposed. If the zonal flow is entirely maintained by eddy motion, it is expected that uθ and
∇m · F will be of the same sign in all regions. Conversely, if eddies are acting to weaken the zonal
flow anywhere, the two quantities will be of opposing sign. The z-component of the field, ∂zFz,
involved a double derivative of eddy streamfunction ψ′, and hence could only be evaluated at three
depth levels. The plots of ∂zFz (right hand side of Figures 6.13 and 6.14) must be interpreted with
caution, due to the indirect way in which eddy temperature was derived. At best, they give a rough
guide only to heat flux effects.

The magnitude of the z-component is considerably greater than that of the r-component in all the
examples shown. It is likely, therefore, that heat effects were of greater importance in determining
the steady-state zonal flow. Note that this was also found to be the case in some previous studies;
for example [49], in which an internally heated flat boundary numerical experiment was performed
at lower Taylor numbers.

The qualitative features of the divergence fields are also of interest. In the sloping boundary
experiments (Figures 6.13(b) and 6.14(b)), there is clear correlation in places between uθ and both
E-P divergence components, r−1∂r (rFr) and ∂zFz. This implies that both heat and momentum
eddy fluxes are acting to maintain some of the features of the observed zonal flow field.

In the flat boundary experiments, uθ is mostly anti-correlated with r−1∂r (rFr) and ∂zFz. This
implies that eddies are weakening the zonal flow, most likely through a combination of baroclinic
and barotropic instability. The only exception is the high rotation rate ∂zFz field, which does not
clearly relate to either the zonal flow or the eddy momentum flux divergence field. For all high
rotation rate flat boundary cases, however, the ∂zFz field took the general form seen in Figure
6.14(a). It is possible that the change in ∂zFz is linked to the transition to turbulence, in which
the vertically sheared zonal flow becomes increasingly barotropic.

As the time-averaged zonal acceleration ∂t〈uθ〉 is expected to be small, ∇m · F was most likely
balanced by other effects in the experiments. In the sloping case, where correlation of 〈uθ〉 with the
E-P flux implied eddy forcing, Ekman and direct viscous damping were probably the main effects
acting to keep the zonal flow roughly constant. In the flat case, as eddies were generally acting
to weaken the zonal flow, it was probably deriving most of its energy directly from the thermal
forcing. However, it is possible that boundary layer effects were also playing a role in the overall
energy budget.
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Figure 6.11: Time and zonal averaged zonal velocity 〈uθ〉, eddy momentum flux 〈u′ru′θ〉 (center) and
approximate eddy heat flux 〈u′rT ′〉 (right) at mid-depth for a selection of experiments with ∆T = 2K.
From top to bottom they are: (a) flat boundary, Ω = 3.9 rad s−1 (b-d) sloping boundary Ω = 0.65, 1.3
and 3.9 rad s−1, (e) sloping boundary ‘fluid B’ Ω = 3.9 rad s−1.
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as a function of r for flat (top) and sloping (bottom) boundary experiments, with ∆T = 2K and
increasing rotation rate Ω = 0.65, 1.3 and 3.9 rad s−1 from left to right.
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Figure 6.13: Plots of time and zonal averaged E-P flux divergence components r−1∂r (rFr) (left) and
∂zFz (right) for a) flat and b) sloping boundary experiments with temperature difference ∆T = 2K and
rotation rate Ω = 1.3 rad s−1. Time-averaged zonal velocity is overplotted in each case, with solid and
dotted lines corresponding to positive and negative values respectively.
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Figure 6.14: Plots of time and zonal averaged E-P flux divergence components r−1∂r (rFr) (left) and
∂zFz (right) for a) flat and b) sloping boundary experiments with temperature difference ∆T = 2K and
rotation rate Ω = 3.9 rad s−1. Time-averaged zonal velocity is overplotted in each case, with solid and
dotted lines corresponding to positive and negative values respectively.
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6.2 Spectral analysis

In any turbulent or nonlinear flow, the spectral view can provide great insight into the nature of
the underlying dynamics. In this section, we examine two-dimensional vertically averaged energy
spectra for the flat and sloping boundary experiments.

Spectral analysis of an annular flow is more complicated than the rectangular channel flow case,
as the correct eigenmode expansion requires combinations of Fourier and Bessel modes. It can
be shown [5] that any single-valued quantity φ defined in a 2D annular domain b > r > a, with
boundary conditions of the form φ(a, θ) = φ(b, θ) = 0, can be expanded in terms of the complete,
orthogonal basis set

φ(r, θ) =
m=+∞∑
m=−∞

n=∞∑
n=1

φmnKmn =
m=+∞∑
m=−∞

n=∞∑
n=1

(
φJmnJm(γmnr) + φYmnYm(γmnr)

)
eimθ (6.5)

where Jm and Ym are Bessel functions of the first and second kind, and γmn is a constant that can
be determined numerically.

For this analysis, a standard fast Fourier routine was used to perform the azimuthal spectral
transform, and a semi-analytical method was used to derive the radial basis modes for the laboratory
annulus. Standard numerical linear algebra routines then projected experimental data onto the
radial modes. Further details of the method used are given in Appendix B. As the observed flows
were in general quite anisotropic, it is of most interest to examine the spectra in two-dimensional
wavenumber space. In Figure 6.15 (left column), time-averaged energy spectra are plotted for
several experiments as a function of azimuthal and radial wavenumbers m and n.

In the flat boundary case, Figure 6.15(a), kinetic energy decreases rapidly with wavenumber, al-
though there are small peaks of energy at m,n = (±4, 1). In the other plots, which are all from
sloping boundary experiments, the concentration of energy in the (0, 1− 3) zonal modes is always
apparent. However, there are also peaks of energy at higher azimuthal wavenumber (approximately
m = 10, 15 and 16 for Figures 6.15(b-d)). These peaks are evidently due to the travelling wave
structures seen in the mid-level vorticity plots.

The behaviour of the waves can be investigated further by use of a temporal Fourier transform.
For convenience, we now use the spatially transformed vorticity field ζmn. The chosen modes are
tagged with an asterisk (*) in each case, and the resulting (normalised) power spectra |ζmn(ω)|2/∫
|ζmn(ω)|2dω are plotted in Figure 6.15 alongside the 2D spatial energy spectra.

While the flat boundary case has a fairly broadband distribution of frequencies at (±15, 2), centred
around ω = 0, the negative frequency peaks for the sloping experiments are clearly apparent. The
blue triangles on the plots denote barotropic planetary wave frequencies as given by

ω =
−βk
k2 + l2

; k =
m

(b+ a)/2
, l =

π

b− a
(6.6)

and the red bars denote wave drift frequencies as predicted by the linear instability analysis of Hide
and Mason [39]. In Hide and Mason’s analysis, the frequency of waves in the annulus are given by
the real part of the expression

ωHM = c̃k, c̃ =
−B ±

√
B2 − 4AC
2A

(6.7)
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with

A ≡ 1
B ≡ G cothG (2iF +Ql +Qu)

C ≡ −
(

1 +
1
4
G2 + F 2 − iF (Ql −Qu)− (Ql +Qu) +QlQu −G cothG(1− 1

2
(Ql +Qu))

)
F ≡ 2ν

Ωkd
G2

Θ

G ≡ 2
N

f0

√
k2 + l2d (6.8)

where Θ is the Hide number, as defined in (5.2). The buoyancy frequency

N2 =
gα∆Tz
d

, (6.9)

which is assumed constant in the analysis, may be related to the horizontal temperature difference
∆T using ∆Tz = χ∆T , where χ ≤ 1 is some constant factor. Of course, as no internal temperature
measurement was possible, the value of χ is not known. Therefore in Figure 6.15, the analytical
prediction (6.7) is plotted for the range of values 0.2 ≤ χ ≤ 1, in order to give a rough guide to the
true analytical prediction.

It may be recalled from Chapter 2 that the analogy between the β-effect and sloping boundaries in a
heated annulus is qualitative only. Thus, as might be expected, the instability analysis gives a better
prediction than the naive barotropic one in general. Indeed, in all plots except Figure 6.15(b), the
barotropic prediction is too large to be contained within the horizontal axis of the plots. However,
the Hide-Mason prediction still tends to slightly overestimate wave frequency, even with the the
vertical temperature gradient uncertainty taken into account. Note that both predictions neglect
the effects of annulus curvature. It is not known to what extent this affects their accuracy, although
errors due to other approximations (such as the neglect of direct viscous damping and Ekman layer
heat transport) may well be more significant.

At high rotation rates, the peaks become broader and more structured (Figures 6.15(d-e)), quite
possibly due to an increase in nonlinear mode-mode coupling. Interestingly, qualitatively similar
peak broadening and shifting due to nonlinear effects have been observed by Sukoriansky et al.
[60], in a numerical study of purely two-dimensional planetary wave turbulence on the surface of a
sphere. In the next section, we examine the interaction between modes in more detail via a spectral
transfer calculation.

6.2.1 Spectral energy transfer

As a final investigation into the dynamics of the flow, the transfer of kinetic energy in spectral
space was calculated. This can be seen as a complement to the Reynolds stress analysis carried
out in Section 6.1.1, as the focus will again be the transfer of energy between eddies and zonal
flow. However, vertically varying effects are ignored in this section. Instead, the emphasis is now
on determining the extent to which barotropic energy exchange between modes is local in spectral
space.

To keep things simple, only spectral transfer in the azimuthal direction will be examined. This
removes the need to calculate triad coefficients involving Bessel functions, which simplifies the
algebra considerably.
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Given a quasigeostrophic interior flow, the quantity

Pm = −
∑

m=p+q

〈Tmpq〉 (6.10)

is the time and radius averaged rate of energy transfer into azimuthal mode m due to all barotropic
nonlinear interactions. In a steady-state system, it must be balanced by nonconservative effects such
as Ekman damping, or by nonlinear interactions of another type, e.g., mixed barotropic-baroclinic.
The result (6.10) is derived in full in Appendix C, where the explicit form for the spectral transfer
term Tmpq is also given.

The sum on the right hand side of (6.10) is the familiar one over all triads satisfying m = p + q.
It is too complex and time-consuming to study the set of all possible triad interactions, so we
choose to examine (6.10) for certain restricted subsets of wavenumbers. In Figures 6.16 and 6.17,
Pm is calculated for the domain −15 < m < 15, but with p and q restricted to the wavenumbers
marked in grey for each plot. In short, the plots show us the energy input to the entire range of
wavenumbers between -15 and 15 from the wavenumbers marked in grey in each case.

Due to the importance of the spectral transfer calculation in determining the nature of the jet-eddy
interaction, it was decided to extend the analysis to a large number of datasets. The plots in Figure
6.16 are from the same experiments as in Figure 6.15, but those in Figure 6.17 are from different
flat and sloping boundary experiments at high rotation rate. The plots appear complicated at first
sight, but some general patterns can quickly be determined. In all cases, the transfer of energy is
predominately towards smaller azimuthal wavenumber. This is expected based on the theoretical
arguments of Chapter 2.

In the flat boundary cases, energy transfer is to a fairly broad range of low wavenumbers, but it is
not exactly as expected by inverse cascade arguments. In detail, the picture is quite complex, as
significant energy exchange occurs between the lowest wavenumbers. Also, the highest wavenumbers
are transferring energy directly to the lowest — although the magnitude of the transfer is much
less than that for intermediate and low wavenumbers.

The sloping boundary experiments exhibit qualitatively different behaviour. In every case studied,
energy transfer to the zonal mode is dominant. For the low rotation rate Ω = 0.65 and 1.3 rad
s−1 experiments (Figures 6.16(b) and (c)), the region of greatest energy input to the zonal mode
also corresponds to the peak wavenumber in the energy spectra (Figure 6.15). At higher rotation
rates, the picture becomes a little more complicated. While the ∆T = 2K experiments (Figures
6.16(d) and (e)) show a decrease in energy input from the intermediate to high wavenumbers, in
the ∆T = 4K experiments (Figures 6.17(d) and (e)) the energy input is the same or greater. The
difference implies a possibly greater role for intermediate wavenumbers when forcing is lower. There
is still little evidence of strong eddy-eddy interaction, however, even in the two low viscosity fluid
B cases.

It is of course possible that significant local energy exchange is occurring in the barotropic-baroclinic
interactions, which we have not investigated here. This seems unlikely, however, based on the two-
layer argument outlined in Section 2.2. Recall that energy exchange between barotropic and (1st)
baroclinic modes is most effective at the deformation wavenumber kD. At lower wavenumbers, it
was argued that interactions between barotropic modes would dominate. As significant barotropic
interaction between low wavenumbers was not observed in the sloping boundary experiments, it
therefore seems likely that energy input to the zonal flow from baroclinic eddy effects was at least
as non-local as in the barotropic case.
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Figure 6.15: Time-averaged two-dimensional contour plots of barotropic kinetic energy in m,n spectral
space for the same experiments as in Figure 6.11. Also plotted are temporal Fourier power spectra of
spectral vorticity ζmn for modes marked by an asterisk on the contour plots.
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Figure 6.16: Normalised azimuthal spectral energy transfer Pm as a function of radius and azimuthal
wavenumber for the same experiments as in Figure 6.11. For each plot, the areas marked in grey are
those from which the wavenumbers p, q are selected.

90



Figure 6.17: Normalised azimuthal spectral energy transfer Pm as a function of radius and azimuthal
wavenumber for a selection of experiments at high rotation rate Ω = 3.9 rad s−1. From top to bottom
they are a) flat boundary, fluid B, ∆T = 2K, b) flat boundary, fluid A, ∆T = 4K, c) flat boundary,
fluid B, ∆T = 4K, d) sloping boundary, fluid A, ∆T = 4K and e) sloping boundary, fluid B, ∆T = 4K.
For each plot, the areas marked in grey are those from which the wavenumbers p, q are selected.
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6.3 Discussion

This section only provides a brief review of the results of this chapter. For a more general discussion
of the experimental results in the context of the entire thesis, turn to Chapter 9.

To summarise: the behaviour of the differentially heated rotating annulus was investigated at high
Taylor and low Hide numbers. When the top and bottom boundaries are flat, it was found, as in
previous studies, that the locally smooth flow observed at relatively low Taylor numbers evolves
into a rapidly varying turbulent one as the rotation rate is increased.

When sloping top and bottom boundaries are present, multiple jets formed at mid-depth in the
fluid. A Reynolds stress analysis showed that eddies were directly feeding momentum into the jets.
A crude E-P flux analysis indicated that eddy heat flux divergences may have had an even greater
role in forcing the jets, although the way in which eddy temperature fields were derived means that
the results cannot be regarded as conclusive. Spectral analysis of the barotropic mode also showed
that eddy energy was concentrated around a definite peak wavenumber and frequency, even in the
multiple jet formation regime.

Perhaps the single most important result obtained from the experiment, however, is that described
at the end of Section 6.2. Through a spectral transfer calculation, it was shown that the eddies
were exchanging energy directly and nonlocally in spectral space with the zonal modes. Hence
turbulent cascade theory, which postulates that energy exchange between local wavenumbers will
dominate, appears to not be applicable, particularly in the case of the sloping boundary results.

This result also hints that the wave-mean flow ideas of Chapters 3 and 4 are an appropriate base
from which to construct a reduced theoretical or numerical model of the experiment. In the next
chapter, this idea is investigated further.
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Chapter 7

Ocean basin experiments

There are many differences between oceanic and atmospheric fluid flow on Earth. In terms of
the jet formation problem, one of the most obvious differences is the fact that all ocean flows are
ultimately bounded by coastlines1 — there is no ‘global ocean’. Although it is generally thought
that there is no fundamental constraint against jet formation in ocean basins, no scientific study to
date has directly addressed the effects of adding boundaries to a system in which the phenomenon
is already known to occur. Rotating annulus experiments with a blocking wall present have been
conducted before in several configurations, most comprehensively by Rayer et al. [48]. However,
none of these investigations were carried out in the highly nonlinear jet formation regime.

During the course of this DPhil, therefore, it was decided that inclusion of a vertical ‘ocean wall’
in the existing laboratory setup would make a most interesting experiment, as it would allow the
hypothesis that vertical boundaries do not inhibit jet formation to be tested directly. In this
chapter, the results of these experiments are presented and analysed. This chapter is based on a
paper [71] that is in preparation for publication.

7.1 Experimental setup

A schematic of the new experimental setup is given in Figure 7.1. It is basically identical to that
described in Chapter 5, with the single difference that a vertical wall is included at θ = π/2 in the
annulus. The wall was constructed from a 1 cm thick sheet of perspex, which can be regarded as
thermally insulating to a good approximation.

As the development of jets in an ocean basin was of most interest to the investigation, all simu-
lations were performed with the sloping top and bottom boundaries present in the annulus. Six
experiments were performed in total, with varying rotation rates of Ω = 1.3 rad s−1 and 3.9 rad s−1

and temperature differences of ∆T = 2, 4 and 6 K. The lower viscosity fluid B was used in all
cases. As in the previous sections, all experiments were run for two hours, with data collection
occurring in the second hour. In the analysis, all time averages were performed over the entire data
collection period.

1Exception to the rule: the Antarctic circumpolar current in the Southern Ocean.
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Figure 7.1: Schematic of the modified ‘ocean wall’ experimental setup.

7.2 Results

Mid-level streak images of the two experiments at ∆T = 4K are displayed in Figure 7.2. As can
be seen, the flow is zonally asymmetric in both cases, with a strong ‘western’ boundary current
clearly visible on the left hand side of the boundary. This current exists due to a geostrophic effect
caused by the radial temperature difference along the ocean wall (see Rayer et al. [48] for details).
As is visible from the streak images, it is the western edge of a long gyre that extends azimuthally
almost to the other side of the wall, decreasing in strength as it goes. In both images, eddy motion
is visible; however in the lower rotation rate experiment (left) it is mainly confined to a region close
to the inner cylinder. In the high rotation rate experiment (right), eddies are visible throughout
most of the domain, and in places, the inner half of the gyre appears to have split into multiple
jets.

The extent to which zonation is occurring is made clearer by looking at mid-level, time-averaged
zonal velocity 〈uθ〉. In Figure 7.3, this quantity is plotted for all six experiments. In Figure 7.4,
〈uθ〉 is also plotted for high rotation rate flat and sloping boundary experiments without a vertical
boundary present, to allow direct comparison with these cases. As can be seen, at low rotation
rates and high temperature differences, the velocity only changes sign once across the channel in
the vertical boundary experiments. At high rotation rate, multiple jets can be clearly observed,
particularly in the ∆T = 4K experiment.

Although Figure 7.3 shows zonal velocities averaged over a 1-hour interval, coherent multiples jets
were observed in fields averaged over intervals as short as a few minutes. This suggests that the
fluctuation timescales in these experiments were relatively rapid. As can be seen, the jets in the
∆T = 4K, Ω = 3.9 rad s−1 experiment also have characteristic length scales (approximately 1

2 to 1
3

of the circumference). The reason for their decay with azimuth is not known, although it is most
likely related to the varying strength of the ‘background’ gyre.

In Figure 7.5, a vertical slice of time-averaged zonal velocity 〈uθ〉 is plotted for all six experiments.
The slice was taken opposite to the vertical boundary, at θ = 3π/2. As can be seen, the flow is
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Figure 7.2: Streak image comparison of the mid-depth flow with temperature difference ∆T = 4K, at
low rotation rate Ω = 1.3 rad s−1 (left) and high rotation rate Ω = 3.9 rad s−1 (right) in the ocean wall
experiments.

remarkably barotropic; more so, in fact, than in the cases where no sloping boundary or vertical
barrier was present. As in Figure 7.3, the transition to multiple jets is most apparent in the high
rotation rate ∆T = 4K experiment.

Because the basic mean flow in these experiments has a strong radial component, zonal averages
are less obviously useful for analysis than they were in the previous experiments. It is of more
interest to compare the relative strengths of the time-averaged flow, and the fluctuations from that
average. In Figure 7.6, mid-level total, time-average and fluctuation kinetic energy are plotted for
the two ∆T = 4K experiments.

As can be seen, time-averaged is greater than fluctuation kinetic energy by about an order of
magnitude at low rotation rate, but only by a factor of about three at the high rotation rate.
The spatial structure of the mean energy plots is extremely revealing. At low rotation rates, most
energy is concentrated around the inner and outer boundaries and the western wall of the annulus.
At high rotation rates, the western boundary current is still present, but significant mean energy
can also be seen in the interior. Fluctuation energy is also more widely distributed in the high
rotation rate case, although it is greatest near the inner cylinder for both experiments.

7.2.1 Reynolds stress analysis

It is also of interest to examine eddy momentum fluxes for these experiments. Due to the difficulty
involved in numerically deriving a geostrophic streamfunction in the azimuthally bounded annular
domain, discussion of eddy heat flux is omitted here.

In Figure 7.7, time-averaged eddy momentum flux divergences are plotted beside the time-averaged
zonal flow for the two ∆T = 4K experiments. In the low rotation rate experiment, where eddy
motion was comparatively weaker, strong flux divergence is confined to a region close to the inner

95



cylinder. The momentum flux is acting to strengthen the negative inner jet close to the cylinder,
but weaken it in the centre of the channel.

At high rotation rates, the eddies are spread throughout the domain, and the flux divergence
field appears more complex. Nonetheless, there are clear areas of correlation with the zonal flow,
particularly in the upper right section of the plot. Ultimately, it is most likely that the observed
steady-state flow profile is maintained partially by eddy action (via both momentum and heat flux
divergences), and partially by the geostrophic effects that give rise to the gyre at low rotation rates.
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Figure 7.3: Mid-depth time-averaged zonal velocity 〈uθ〉 at low rotation rate Ω = 1.3 rad s−1 (left) and
high rotation rate Ω = 3.9 rad s−1 (right) in the ocean wall experiments, with temperature difference
∆T = 2K (top), ∆T = 4K (centre) and ∆T = 6K (bottom).
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Figure 7.4: Mid-depth time-averaged zonal velocity 〈uθ〉 at high rotation rate Ω = 3.9 rad s−1 in the
flat (left) and sloping (right) boundary experiments described in Chapter 6, with temperature difference
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7.3 Discussion

The results of this chapter demonstrate that quasi-barotropic jet formation can occur even if a
vertical boundary is present in the annulus. It was found that at high Taylor numbers, the gyre
and western boundary current observed by Rayer et al. [48] becomes turbulent and splits into a
series of multiple zonal jets at mid-depth. Clearly, these results may have interesting implications
for the oceanic jet formation problem.

It is interesting to compare the vertical structure of the jets observed in this chapter with those
of Chapter 6. As has been noted, the former were found to be significantly more barotropic. The
reason for this is unknown, although in Rayer et al. [48], it was suggested that the low rotation rate
gyre was mainly height-independent in the fluid interior (the so-called ‘ζ-circulation’), and that it
could be described by an essentially linear argument.
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The eddy momentum flux results are also of interest, although the analysis is made more difficult
by the lack of zonal symmetry of the observed flow. The time-averaged eddy momentum flux
divergence fields at low rotation rates clearly indicate that initially, eddies act to split the inner
part of the gyre into two jets. At higher rotation rates, the flux divergence field is less coherent,
although some correlation with the zonal flow can be observed, especially in the ‘eastern’ part of
basin (top right). It would be of much interest in future work to analyse the relative importance
of eddy momentum and heat fluxes.
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Chapter 8

Reduced model of the experiment

In this chapter, the numerical code of Chapter 4 is generalised to the two-layer equations, in order
to create a simple reduced model of the laboratory experiment. In the first section, the model
setup is described. Next, the results of the model for a linear instability test case are compared
with theory, and it is verified that the model conserves energy when forcing and damping are zero.
Realistic forcing and damping mechanisms are then included, and the model is run in a bounded
cylindrical coordinate system with the same dimensions as the experimental annulus. As will be
seen, the qualitative steady-state jet structure predicted by the model is remarkably close to that
observed in the sloping boundary experiments at high rotation rates.

8.1 Model setup

The numerical model presented in Chapter 4 is incapable of describing the flow in the annulus, even
qualitatively, because it lacks vertical structure and hence cannot capture baroclinic instability. As
discussed in Chapter 2, the simplest possible way to describe baroclinic processes in reduced form
is via the two-layer approximation.

Here, therefore, equations (2.27)-(2.28) are used as a starting point. Of course, it is naive to expect
that all details of the experimental system can be captured with a purely quasigeostrophic model.
This is not the aim of the chapter. Instead, we wish to see if the general features of the observed
flow can be captured with as simplified a set of equations as possible.

The main approximation is that made in Chapter 3: all wave-wave interaction is neglected. Only
interaction between the zonal mean flow and a single azimuthal mode is to be considered. The
spectral transfer analysis of Section 6.2 has suggested (but not proved) that this approximation
may well be a reasonable one. In one sense, therefore, this entire chapter can be regarded as a test
of the following hypothesis:

The structure of the jets in the experimental flow is primarily determined by wave-mean flow in-
teractions. Wave-wave interactions are of secondary importance only.

Of course, the restriction to a single azimuthal mode brings an additional, large approximation
to the model. Referring to the spectral energy graphs of Chapter 6, for example, it is clear that
significant amounts of energy are distributed among different wavenumbers even for the low rotation
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rate, non-turbulent experiments. At the end of the chapter, we discuss the effect this second
approximation has on the model dynamics.

When the standard decomposition into zonal mean and eddy fields is made, the modal two-layer
equations (2.27)-(2.28) (with Ekman damping now included) become1

∂tq +
1
2

(
J [ψ′1, q

′
1] + J [ψ′2, q

′
2]
)

= −κq (8.1)

∂tσ +
1
2

(
J [ψ′1, q

′
1]− J [ψ′2, q

′
2]
)

= −κσ (8.2)

for the mean flow. Following the procedure described in Chapter 3, this can be rewritten as

∂tq +
1
2
∂y

(
v′1q
′
1 + v′2q

′
2

)
= −κq (8.3)

∂tσ +
1
2
∂y

(
v′1q
′
1 − v′2q′2

)
= −κσ. (8.4)

Note that for simplicity, we use the channel coordinate system of Chapter 3 throughout this chapter.
Given the many other approximations used in the model, it was decided that the error introduced
by neglecting annulus curvature would not be significant.

Given the relationship between potential vorticity, streamfunction and velocity, the above equations
can be rewritten in terms of the barotropic (ut) and baroclinic (uc) zonal flow only2

∂tut =
1
2

(
v′1q
′
1 + v′2q

′
2

)
− κut (8.5)

∂tuc =
1
2

(
1− k−2

D k̂2
y

)(
v′1q
′
1 − v′2q′2

)
− κuc. (8.6)

The two-layer equations for the disturbances are derived in the same way as equation (3.6). They
are

∂q′

∂t
+ ut∂xq

′ + γt∂xψ
′ + uc∂xζ

′
c +

(
γc − k2

Duc
)
∂xτ

′ = −κq′ (8.7)

∂σ′

∂t
+ uc∂xq

′ + γc∂xψ
′ + ut∂xσ

′ + γt∂xτ
′ = −κσ′, (8.8)

where γt = ∂yq, γc = ∂yσ, and ζ ′c = ∇2τ .

To investigate equations (3.5) and (3.6) numerically, we follow the method of Chapter 4, and
assume the disturbance fields to be broadband in the ky direction, but a function of one azimuthal
wavenumber only: e.g., q′t = Re[Qteik0x]. This allows, after a little algebra, the derivation of the
simplified one-dimensional equations

i
∂Qt
∂t

= k0

(
utQt + γtΨt + uc(Qc + k2

DΨc) +
(
γc − k2

Duc
)

Ψc

)
− iκQt (8.9)

i
∂Qc
∂t

= k0 (ucQt + γcΨt + utQc + γtΨc)− iκQc (8.10)

1It is worth noting here that the two-layer equations are directly analogous to the two-level equations, in which
a binary discretisation of the continuous quasigeostrophic equation (2.20) is performed. See e.g., Pedlosky [44] for
further details.

2Note for the worried mathematician reader: equation (8.6) can be rigorously derived by considering the Taylor

expansion of the operator k̂2
y/

“
k̂2

y + k2
D

”−1

, with k̂y = −i∂y as in Chapter 3, and kD a constant.
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Figure 8.1: Schematic of the two different grids used in the reduced model. In the periodic grid, the
value of all fields at the i = 1 point is set to that at the i = n point at each timestep. In the bounded
grid, all quantities are set to zero at i = 1, n.

and
∂ut
∂t

= Rt − κut (8.11)

∂uc
∂t

=
(

1− k−2
D k̂2

y

)
Rc − κuc (8.12)

for waves and mean flow respectively, where

Rt = +
k0

2

(
Im[Ψt]Re[k̂2

yΨt]− Im[k̂2
yΨt]Re[Ψt] + Im[Ψc]Re[k̂2

yΨc]− Im[k̂2
yΨc]Re[Ψc]

)
(8.13)

Rc = −k0

2
(Im[Ψc]Re[Qt]− Im[Qt]Re[Ψc] + Im[Ψt]Re[Qc]− Im[Qc]Re[Ψt]) , (8.14)

and

Qt = −
(
k̂2
y + k2

0

)
Ψt (8.15)

Qc = −
(
k̂2
y + k2

0 + k2
D

)
Ψc. (8.16)

The coupled equations (8.9)-(8.16) are solved numerically by the same explicit 4th order method
as in Chapter 4.

Initial tests of the model were performed with periodic boundary conditions for simplicity; these
are described in the next section. However, a bounded domain was used for the direct experimental
simulations. The two different grids used are compared in Figure 8.1.

In the latter case, it was chosen to use non-slip boundary conditions for the zonal flow and free-slip
for the eddy fields, which corresponds to the requirement that

ut = uc = ψ′t = ψ′c = 0, r = a, b. (8.17)

While they may appear rather unusual, these conditions are necessary in order to ensure energy and
mass conservation in the model [45]. The issue of physical boundary conditions in quasigeostrophic
models is a long and contentious one, and we will not attempt to fully describe the details of the
problem here. For further information, Davey (1978) is recommended [15].

Finally, we also note that thermal forcing and viscous damping are to be included in the final
simulations. These additions are described after basic model validation, in Section 8.3.
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8.2 Model validation

One of the most attractive features of the two-layer equations is that they can be linearised and
solved exactly for the β-plane baroclinic instability problem. This is extremely useful for code
validation, as it allows the output of the model to be tested against known analytical predictions.

By assuming that the barotropic mean flow is zero, that the baroclinic mean flow has the constant
value U and that there is no Ekman or viscous damping, equations (8.9)-(8.11) can be greatly
simplified. If Qt(y, t) and Qc(y, t) are then written in terms of the usual modal variables ω and ky,
(such that e.g., Qt = Q0e

ikyy−iωt) the linear dispersion relation

ω =
1
2

(ωψ + ωτ )± 1
2

√
(ωψ − ωτ )2 − 4A(B −A) (8.18)

results [58]. Here, ωψ and ωτ are the free barotropic and baroclinic wave frequencies

ωψ =
−βk0

k2
0 + k2

y

, ωτ =
−βk0

k2
0 + k2

y + k2
D

(8.19)

and the other constants are defined as

A =
k0|k|U√

k2
0 + k2

y + k2
D

and B =
k0k

2
DU

|k|
√
k2

0 + k2
y + k2

D

. (8.20)

In Figure 8.2(a), the analytical growth rate ωi ≡ Im[ω] according to (8.18) is plotted as a function

of the parameters U and |k| =
√
k2

0 + k2
y (which are shown in dimensionless units for this example).

The red curve shows the boundary between stable and unstable flows.

In Figure 8.2(b), the growth rate as predicted by the reduced model with periodic boundary condi-
tions and resolution ny = 64 is shown. The growth rate in the model was calculated by starting a
simulation with a constant baroclinic zonal flow uc(y) = U , zero mean barotropic flow and a small
amplitude random initial condition for the waves. After a model evolution time of 100 dimension-
less units, with barotropic and baroclinic zonal flow held constant, a combined Fourier-Laplace
transform was then used to acquire the growth rates of individual modes.

As can be seen, the model agrees closely with analytical predictions. The only minor deviations oc-
cur at the top-left instability boundary, where forcing amplitude U is high and absolute wavenumber
is low. As the experimental simulations involve flows that were typically well within the instability
region, these deviations were not regarded as significant. In Figure 8.3, growth rate is plotted
against north-south wavenumber ky, with model results given by the red circles and analytical
predictions by the black curve. Again, the model results match the predictions closely, showing
that in the linear regime the model is indeed behaving as expected from theory.

Next, the model was tested in the nonlinear regime, with zonal flow evolution due to eddy interaction
included. In order to test energy conservation of the model, a simulation was performed with forcing
and damping switched off, in the same doubly periodic channel domain as before. At each step, the
energy of each component was recorded and the total energy computed according to (2.53). As can
be seen from Figure 8.4, total energy was conserved by the system despite significant variations in
the energy of the different barotropic and baroclinic components. In Figure 8.5, the steady-state
energy flow in the model when forcing and damping are included is summarised in terms of a block
diagram.
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Figure 8.2: Contour plot of baroclinic instability growth rate vs. absolute wavenumber |k| and
baroclinic shear strength U according to (a) analytical predictions and (b) the numerical model.
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Figure 8.3: Plot of baroclinic instability growth rate vs. radial wavenumber ky. The black line is
the analytical prediction, while the red dots are output from the reduced model in a periodic boundary
configuration, with Ekman damping, viscosity and mean flow evolution all set to zero.
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Figure 8.4: System energy as a function of time for a reduced model simulation in the periodic
configuration, with Ekman damping and viscosity set to zero.

8.3 Simulation of the sloping boundary experiment

To simulate the sloping boundary results of Chapter 6, it is necessary to include several extra
features in the model. First, quasigeostrophic boundary conditions are enforced at r = a, b, as de-
scribed in Section 8.1. Second, as steady-state solutions are desired, thermal forcing must included
to balance the Ekman damping.

The simplest possible form of forcing involves linear relaxation to a fixed baroclinic mean flow. The
baroclinic forcing amplitude, Uf , can be related to real experimental parameters by dimensional
analysis. Approximately, the thermal wind equation

2Ω
∂uθ
∂z

=
g

ρ

∂ρ

∂r
, (8.21)

combined with the hydrostatic balance approximation (2.6) and the linear equation of state

ρ = −ρ0α(T − T0) (8.22)

can be used to derive the expression

Uf =
α∆Tgd

4Ω(b− a)
. (8.23)

Thus baroclinic forcing amplitude is proportional to the applied horizontal temperature difference.
Following previous quasigeostrophic studies of baroclinic instability in a heated annulus [35], the
form of the forcing is chosen to be linear relaxation to a sine function over the channel

F = κ(Uf sin(πr/(b− a))− uc). (8.24)

The deformation wavenumber kD was taken to be π/LD, with LD the deformation scale as defined
by (6.1). For simplicity, the factor χ was taken to be unity. Although this means that kD in the
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Figure 8.5: Schematic of energy flow in the reduced model when forcing and damping are present.

simulation will be an underestimate of its experimental value, the difference was not judged to be
significant given the other approximations already made.

Initially, runs were perfomed with only these modifications present; the effects of direct viscous
damping, in particular, were neglected. It was found that a large number of multiple jets typically
formed in these runs, with the jets frequently becoming barotropically unstable before a steady state
was reached. It was then decided to include the effects of viscous damping, which are almost always
ignored in quasigeostrophic models of atmospheric flow, but are of importance in the laboratory.
This caused a dramatic difference in the flow evolution; fewer jets formed, and those that did stayed
barotropically stable. The relative effects of Ekman and viscous damping, displayed in Figure 8.7
for a typical simulation run, are discussed further later in this section.

With all new terms included, the model equations therefore become

∂ut
∂t

= Rt − κut + ν∂yyut (8.25)

∂uc
∂t

=
(
1 + k−2

D ∂yy
)
Rc + F + ν∂yyuc (8.26)

i
∂Qt
∂t

= k0

(
utQt + γtΨt + ucζc +

(
γc − k2

Duc
)

Ψc

)
− iκQt + iν(∂yy − k2

0)Qt (8.27)

i
∂Qc
∂t

= k0 (ucQt + γcΨt + utQc + γtΨc)− iκQc + iν(∂yy − k2
0)Qc. (8.28)

A schematic of the expected energy flow in the model is shown in Figure 8.5. Initially, all energy
is concentrated in the axisymmetric baroclinic shear flow, uc. As the flow is unstable, it causes
baroclinic and barotropic eddies to grow. As the eddies grow larger, they begin to transfer energy to
the barotropic zonal jets. Eventually, a steady state is reached where Ekman and viscous damping
of the eddies and barotropic mean flow balances the energy input to the baroclinic mean flow due
to thermal forcing.

It was decided to set the azimuthal wavenumber m = 15 for the comparison simulation, correspond-
ing to k0 = 2m/(b − a) = 3.06 rad cm−1. This value was chosen because barotropic energy was
observed to peak there in the spectral plots (see Figure 6.15 in Chapter 6). Later in this section,
the effects of varying wavenumber on the model results are considered.
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Figure 8.7: Plot of barotropic and baroclinic eddy forcing alongside zonal acceleration (with and
without viscous damping included) for the steady-state barotropic zonal flow.

The effects of varying radial resolution were tested and found to be negligible for the value chosen
(nr = 64). Indeed, it was found that the model produced qualitatively similar results with resolution
as low as nr = 16! The viscous effects, which preferentially damp small scales, were believed to be
the primary reason for this.

In Figure 8.6, output of the model and experimental results are directly compared. On the left, plots
of time-averaged zonal velocity in the steady-state regime are shown. On the right, instantaneous
barotropic eddy vorticity for the m = 15 azimuthal mode is displayed. The external parameters
for the simulation and experiment are identical, except for the forcing amplitude Uf , which is 3.5
times greater in the simulation. The reasons for this will be discussed shortly.

As can be seen, the quantitative correspondence between the barotropic zonal flow in the two
cases is remarkably close. There is also qualitative similarity between the m = 15 barotropic eddy
vorticity fields; in particular, the ‘tilt’ of the wavefield is the same, indicating that the eddies are
transporting momentum into the jet in both cases. Quantitatively, however, the experimental eddy
vorticity is stronger, by a factor of around four.

In Figure 8.7, the various forces balancing the acceleration of the barotropic zonal flow in the steady
state are shown. Blue and red lines show the barotropic and baroclinic forcing terms, while the
dotted black line shows what the zonal acceleration would be if viscous damping was not present.
As can be seen, direct viscous effects play a very important role in keeping the steady-state jet

Table 8.1: Parameters of the chosen comparison experiment.

Sloping boundary angle δ 22◦

Kinematic viscosity of fluid ν 2.04×10−6 m2s−1

Radial temperature difference ∆T 2K
Rotation rate Ω 3.9 rad s−1

Effective baroclinic shear Uexpt 0.0872 cm s−1
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stable.

To produce a barotropic jet that quantitatively matched that in the experiment, it was necessary to
increase the forcing parameter Uf by a factor of 3.5. To determine the effect of varying baroclinic
forcing in general, a series of runs were performed with different values of forcing amplitude Uf .
In Figure 8.8 (top), maximum absolute barotropic zonal velocity umax as a function of forcing
amplitude is displayed. Three example steady-state barotropic jet profiles are also displayed below.

As can be seen, there is an initial region below a critical forcing threshold in which the system
is stable and eddy growth cannot occur (just as in the linear problem described in Section 8.2).
Once instability is possible, the dependence of umax on Uf appears approximately linear, with
some changes in the gradient occurring at certain values in concert with a change in the number
of steady-state jets (e.g., 3 → 2 jets at Uf ≈ 0.3 cm s−1). Beyond a second critical value, the
barotropic jets produced were unstable. Note that some evidence of multiple equilibria was found
in the system; two runs with identical parameters but different initial small random fields for Qt
and Qc were sometimes found to produce different steady-state jets. Most commonly, there were
only two equilibria, consisting of jets with equal magnitude, but opposite sign.

The effect of varying azimuthal wavenumber in the simulation was also studied. Results are plotted
in Figure 8.9, with the format similar to that in the previous example. Interestingly, umax was
observed to peak at around m = 20, a value slightly higher than that chosen for the simulation. As
in the case of varying Uf , abrupt changes in the steady-state jet profile were also observed, with
the m = 16 results (centre bottom of Figure 8.9) showing two jets instead of three.

The inclusion of viscous damping in the model tends to smooth out both the zonal flow and eddy
wave action in the radial direction. As a result, the phase space view used so extensively in Chapter
4 is less revealing than in the invisicid case; eddy wave action tends to have very low wavenumber
values, with little spatial wavenumber variation. For this reason, it was decided not to analyse the
phase space distribution of barotropic and baroclinic modes in this Chapter.

8.4 Discussion

The results of this chapter demonstrate that the jet formation observed in the rotating annulus
experiment can be qualitatively reproduced with an extremely reduced and simplified model. In
essence, the full three-dimensional Navier-Stokes equations, which could be used at great computa-
tional cost to describe the annulus flow with high accuracy, have been reduced down to four coupled
one-dimensional equations.

Table 8.2: Reduced model parameters.

Radius of inner cylinder a 4.5 cm
Radius of outer cylinder b 14.3 cm
Kinematic viscosity of fluid ν 2.04×10−6 m2s−1

Beta parameter β 0.2932 cm−1s−1

Radial resolution nr 64
Azimuthal wavenumber m 15
Forcing amplitude Uf 3.5 Uexpt

112



! !"# !"$ !"% !"& '
!

!"!#

!"!$

!"!%

()*+,-*.
!'
-

/
,
0
1
)*
+
,
-*
.
!
'
-

!2 ! 2

1)'!
!3

%

&

'!

'#

'$

/
4
)*+,-*.

!'
-

5)
*+
,
-

!!"!# ! !"!#

%

&

'!

'#

'$

/
4
)*+,-*.

!'
-

5)
*+
,
-

!!"!2 ! !"!2

%

&

'!

'#

'$

/
4
)*+,-*.

!'
-

5)
*+
,
-

steady-state region

no eddy

growth

barotropic 

instability

f

Figure 8.8: The effects of varying baroclinic forcing on the maximum steady-state barotropic zonal
velocity umax. Three example barotropic jet profiles are also shown.

The main discrepancy between the experiment and the model is that the model requires a greater
effective temperature difference (baroclinic forcing amplitude) to produce a barotropic jet of the
same magnitude. This is almost certainly due to the fact that the model artificially excludes all
azimuthal modes except for the zonal flow and the waves. As a result, a given baroclinic zonal
shear equilibrates with a comparatively smaller amount of total eddy wave action and hence tends
to produce a weaker barotropic jet.

It would of course be interesting in future work to generalise the reduced model to include multiple
azimuthal modes, possibly along with an option to include full nonlinear interactions. However,
the simplicity of the model, combined with its success in predicting qualitative features of the jets,
provides a strong argument that wave-mean flow interaction is the key to the dynamics of the
experimental system.
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Chapter 9

Conclusion

9.1 Summary of results and discussion

What has been achieved in this thesis?

Let us begin the discussion by reviewing the theoretical section (Chapters 3 and 4). In Chapter
3, it was shown that the nonlinear interaction between an arbitrary zonal flow and a broadband
distribution of planetary waves can be expressed in terms of the Wigner distribution, a tool first
developed in quantum mechanics. In the following chapter, the Wigner distribution was used to
analyse and interpret the results of a wave-mean flow numerical simulation.

The derivation presented in Chapter 3 generalised previous results on the subject, also highlighting
some interesting links between wave-mean flow theory and quantum mechanics. However, it still
made one large assumption: that of no wave-wave interaction. The aim of Chapter 4 was to study
jet formation in as reduced a form as possible. Although the numerical model described there was
extremely simplified, it was possible to use it to explain jet formation and asymmetry in a simple
test case. Several possible extensions of the model were suggested in Section 4.5, including the
addition of random forcing, to study the case of multiple jet formation. In Chapter 8, the model
was extended to include the effects of vertical stratification.

It should be noted that other phase space analysis techniques, such as the wavelet transform, have
been used with some success in fluid dynamics to analyse the properties of chaotic and turbulent
flows (see e.g., van der Berg (2004) for a review of wavelet techniques [65]). However, the Wigner
distribution has several important advantages. First, as was shown in Chapter 3, it can be used
to directly derive dynamical wavepacket transport equations, extending its use beyond a purely
diagnostic role. Second, when correctly defined, as in the derivation given here, its projection onto
real space is the wave action of the disturbance field. This fact connects the phase and real space
views directly, allowing previous theoretical results on the subject to be combined. If the idea of
treating classical fields as ensembles of interacting wavepackets has future merit, therefore, it is
likely that the Wigner distribution will continue to play a central role.

In the second main part of this thesis (Chapters 5-7), a laboratory study of fluid motion in a
differentially heated rotating annulus at high Taylor and low Hide numbers was presented. A
range of experiments were performed with both flat and sloping top and bottom boundaries. Some
experiments were also performed with a vertical flow barrier present in the annulus.
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In Section 1.4, we posed six key questions about jet formation in the experiment. They are repro-
duced below for convenience:

• Do multiple barotropic jets develop in the experimental system?

• If so, are the jets dynamically stable?

• How do they interact with the turbulent eddies?

• Is a turbulent cascade of energy from small to large scales occurring?

• If not, can wave-mean flow theory be used to describe the jet formation process?

• Do jets form in the annulus when a vertical flow barrier is also present?

The first question is easily answered by referring to Figures 6.7-6.8. Multiple jets do form in the
sloping boundary experiments, but only under special conditions: high rotation rate, low viscosity,
and relatively low thermal forcing.

The jets were found to be barotropically stable at all times. This is in contrast to the experiment
of Read et al. [52], where the instantaneous zonal flow was found to be unstable, but the time-
averaged flow tended towards a marginally stable state. It is possible that the barotropic stability
of the flow may have been of importance in suppressing eddy-eddy interactions; although as is
discussed below, there was also evidence of spectrally nonlocal interactions in the experiment of
Read et al..

The third, fourth and fifth questions are intimately related to each other. Initially, the problem
of jet-eddy interaction was tackled in the most obvious and simple way possible; via a Reynolds
stress analysis (Section 6.1). It was found that generally, eddy momentum fluxes converged onto
same-signed zonal flow in the sloping boundary experiments, but onto opposite-sign zonal flow in
the flat boundary cases. This result provided direct evidence that the multiple barotropic jets in
the sloping case were at least partially sustained by the horizontal transport of eddy momentum.

Through a quasigeostrophic assumption, approximate eddy temperature fields were derived and
used to calculate the radial eddy heat flux. It was found that, as expected, that eddies always
transported heat radially inwards (‘poleward’). However, the lack of direct thermal data meant
that the relative effect of heat flux divergence on the zonal flow evolution was difficult to determine
accurately. The crude E-P analysis performed suggested that heat flux effects may have been
greater than momentum flux effects, implying a zonal flow mainly driven by thermal eddy effects.

Answering the fourth question was more challenging. In order to address it, an expression for the
transfer of kinetic energy between different azimuthal barotropic modes of the system was derived
(6.10). Transfer of energy between different radial and vertical modes was ignored, in order to keep
the calculation as simple as possible. It was found that energy transfer was typically nonlocal in
the subset of triads analysed, especially in the sloping boundary experiments, where energy transfer
from high and intermediate wavenumbers to the m = 0 zonal flow dominated in almost all cases.
Although energy transfer was from smaller to larger scales in almost every case studied, spectrally
local energy transfer was not observed in experiments where sloping boundaries were present.

In Read et al. [52], a spectral transfer analysis of the experimental results was also performed,
although in their work, only the energy transfer from small to large scales was computed. As in the
experiment presented here, the transfer was found to be strongly nonlocal when sloping boundaries
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were present, with energy flow to zonal modes dominating over other interactions. Although the
effects of varying rotation rate and forcing on the spectral transfer were not studied, their result does
indicate that nonlocal interaction may even occur in systems with much weaker viscous damping
than the experiment studied here.

In Chapter 8, the wave-mean flow numerical model used in Chapter 4 was generalised to two layers,
in order to address the fifth question posed in the introduction. It was found that the jet formation
observed in the experiment could be qualitatively reproduced by the numerical model, although
quantitatively, there were differences between the two cases.

For simplicity, the model focused on the interaction between the zonal flow and only one azimuthal
mode, which was chosen to correspond to the most energetic non-zonal mode in the experiment, as
observed from kinetic energy spectra (Figure 6.15). A numerical code that described the interaction
between zonal flow and all azimuthal modes would have been much more complex, which would
have weakened the motivation for constructing the reduced model in the first place. However, it
is possible that such a model would have reproduced the experimental flow more accurately than
that described here.

It is of much interest to compare the experimental results with the observed properties of real
planetary-scale fluid motion. The sloping boundary results are perhaps most relevant to the state
of Earth’s atmosphere at mid-latitudes. As described in Chapter 1, the eastward Atlantic jet stream
is known to be partially maintained by a combination of eddy heat and momentum fluxes — much
like the jets produced in the sloping boundary experiments.

Typically, the deformation radius in the midlatitude troposphere is of order 1000km [58], and the
width of the jet stream is approximately 5000km. In the high rotation rate sloping boundary
experiments, the horizontal buoyancy scale (6.1) was approximately 1/10th of the channel width,
implying the relative deformation scales may be roughly comparable in these two systems. As
with any laboratory study, a key problem in making comparisons comes from the fact that Ekman
damping and viscous damping is always greater than that in planetary atmospheres. In Chapter
8, it was seen that viscous damping, in particular, has a dramatic effect on the flow, increasing
barotropic stability and reducing the total number of steady-state jets.

Despite these important differences, the results here raise interesting questions regarding the real
atmosphere that may well be worth pursuing further. The spectral transfer result, in particular,
deserves further investigation, as established theory on atmospheric turbulence often assumes a
more standard cascade picture of planetary-scale turbulence. If wave-mean flow interactions are
found to be dominant in Earth’s atmosphere, it could well have interesting implications for the
climate modelling community. This point is discussed further in the next section.

It is also interesting to compare these results with the zonation observed on gas giant planets. The
differences in the gas giant case are somewhat greater, as interior convection, rather than baroclinic
instability, may well be the dominant forcing mechanism there. Also, the observed Jovian jets are
persistently barotropically unstable, whereas the ones produced by this experiment were stable.
However, the basic mechanism of multiple jet formation due to eddy flux divergences does appear
to be the same in both cases. Whether or not a spectrally local turbulent cascade from eddy to jet
scales is occurring on the gas giant planets is, to the author’s knowledge, still an open question.

The final question in the list was answered in Chapter 7, where the results of experiments with
both sloping boundaries and a vertical wall were reported. In the experiments, a gyre and ‘western’
boundary current were observed at low rotation rates, in agreement with the findings of Rayer et al.
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[48]. At moderate rotation rates, eddies appeared near the inner cylinder, but did little to affect
the steady-state appearance of the gyre. At high rotation rates, however, the eddies intensified and
spread throughout the channel. Simultaneously, the gyre was observed to split, with time-averaged
zonal velocity plots clearly showing the presence of multiple jets at mid-depth.

As mentioned in Chapter 1, some evidence of multiple jet formation has already been observed in
ocean simulations of varying complexity [55]. However, there is still active debate as to whether
the dynamical jet formation process can be the same as that seen in planetary atmospheres. For
example, in a recent numerical study by Berloff (2005), an alternative explanation of oceanic jet
formation in terms of the nonlinear interaction of resonant basin modes was suggested [10]. This
study is the first one to directly compare flows in the jet regime with and without vertical boundaries
present. For this reason, it should prove of relevance to the wider oceanographic debate.

9.2 Future work

There are clearly many ways in which the work presented here could be extended and generalised.
We begin with a discussion of the experimental part of the thesis.

The most obvious weak point of the experimental results is a lack of direct information on the
temperature of the fluid interior. In order to resolve some of the remaining questions about the
relative importance of eddy momentum and heat fluxes, it is strongly recommended that any future
investigators make the acquisition of velocity and temperature field information their priority. As
discussed in Chapter 5, the PIT (particle imaging thermometry) method appears to hold the
greatest long-term potential for this purpose. The challenge in implementing PIT is a technological
one; in particular, effective lighting and a high-quality colour camera are required for it to be
successful.

In terms of the broader scientific picture, the most logical extension of the experimental work would
be a much wider study of geophysically relevant baroclinically forced jet regimes, with a particular
focus on the nature of the zonal-eddy and eddy-eddy interactions. Such a project could be carried
out either experimentally, or using a fully nonlinear numerical simulation.

The key challenge in performing any study, numerical or experimental, is reducing the damping of
the system, in order to reach conditions closer to those of real planetary-scale flows. Extremely
high resolution numerical simulations would probably be capable of quantitatively reproducing
the results of the experiments reported here. However, larger facilities, such one in which the
experiments of Read et al. [52] were conducted, are still far beyond the effective reach of fully
three-dimensional, unparameterised numerical simulation. If a baroclinic turbulence study were
technologically feasible in a large-scale apparatus, therefore, the experimental approach would
probably be the best one to pursue.

There would also be much to be gained from a systematic study of jet formation regimes in simple
systems with ocean basin boundary conditions. As current state of the art ocean simulations still
lack the necessary resolution to resolve many important dynamical processes (particularly baroclinic
instability), the detailed study of simplified systems may prove of great benefit to our understanding
of the differences between the ocean and atmospheric cases.

The results of Chapters 3 and 4 have shown that phase space analysis techniques can give much
insight in wave-mean flow problems. In Chapter 8, however, the viscous terms in the fluid equations
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meant that higher wavenumbers were preferentially damped away, and application of phase space
ideas to the problem ultimately proved unrevealing.

As an extension of the work in Chapter 4, therefore, it would be most interesting to apply the
Wigner analysis to more strongly nonlinear simulations or experiments, possibly of the type just
discussed. If wave-mean flow interactions turn out to be dominant even in these cases, then phase
space analyses may well give greater insight into the dynamics.

Another possibility would be to investigate multiple jet formation via the modulational instability of
planetary waves, using the numerical model of Chapter 4. Although a limiting case of the problem
has been studied in [38], little investigation into more general cases has been made. Potentially,
such a study could allow prediction of characteristic jet scales from first principles – something
which has so far only been possible to achieve through scaling analysis.

Finally, the techniques described here could be utilised in many other wave-mean flow problems.
One obvious candidate would be the interaction of quasigeostrophic vortices with inertia-gravity
waves. Phase space analysis might in fact be particularly suited to this problem, as the scale
separation between mean flow and waves is more distinct than in the planetary wave - zonal flow
case.

More speculatively, the numerical model of Chapter 8 may also point to interesting possible future
applications. At the time of writing, a letter has been published by O’Gorman and Schneider [42],
in which the effects of removing all eddy-eddy interaction from a fully general circulation model
were studied. In their work, it was found that many, but not all, features of general circulation
remained the same when only eddy-mean flow interactions were permitted.

As was mentioned in Chapter 8, removing eddy-eddy interactions from numerical simulations allows
the model run time to be dramatically shortened. If it can be more rigorously shown that wave-
mean effects dominate in geophysically relevant fluid flows, then this opens up some intriguing
possibilities for general climate simulations. For example, it is possible that by parameterising, or
even neglecting eddy-eddy interactions altogether, fast, simple GCMs could be constructed. As
much of the current focus of climate research is on ensemble forecasting, which involves extremely
large numbers of similar simulations, such an improvement could possibly allow the exploration of
multi-dimensional parameter regimes in far more detail than has so far been possible.
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Appendix A

Acquisition of eddy streamfunction

Eddy streamfunction fields were used in Section 6.1, in order to estimate radial eddy fluxes of heat.
They were derived via a standard finite-difference matrix inversion method, which we describe here.

The continuous relationship ζ ′ = ∇2ψ′, ψ′|r=a,b = 0 (see Section 6.1) becomes

ζ ′ =
(

1
r

∂

∂r

(
r
∂

∂r

)
+

1
r2

∂2

∂θ2

)
ψ′, ψ′|r=a,b = 0 (A.1)

in two-dimensional polar coordinates. Note that as derivation of T ′ from ψ′ required use of the
quasigeostrophic assumption, free-slip boundary conditions were judged to be most appropriate
here.

Equation (A.1) can be written in finite difference form as

ζ ′i,j =
ri+ 1

2
,jψ
′
i+1,j − 2ri,jψ′i,j + ri− 1

2
,jψ
′
i−1,j

ri,j∆r2
+
ψ′i,j+1 − 2ψ′i,j + ψ′i,j−1

r2
i,j∆θ2

,

ψ′i,j |ri,j=a,b = 0. (A.2)

Equation (A.2) was converted into a tridiagonal matrix (see e.g., [47]) and inverted using Matlab’s
inv matrix routine. Conversion of vorticity to streamfunction fields then required only a single,
computationally efficient matrix multiplication.

Figure A.1 shows an example original eddy vorticity field at mid-depth (top left), and the stream-
function field (top right) derived according to this method. In the bottom left is the vorticity field
rederived by numerical differentiation of the streamfunction field. In the bottom right, the squared
difference between real and rederived vorticity fields is plotted.

As can be seen, the difference between real and rederived fields is fairly small, although it increases
towards the edges of the annulus. This is most likely due to boundary layer effects; the free-slip
boundary conditions are strictly only valid for a quasigeostrophic fluid. Slight errors are also added
by the numerical differentiation mapping ψ′ to ζret. The difference between the two fields was
judged to be small enough to be neglected in the eddy heat flux analysis of Section 6.1.
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Figure A.1: (top left) Mid-level snapshot of vertical eddy vorticity component ζ ′ for a sloping boundary
experiment with Ω = 1.3 rad s−1 and ∆T = 2K. (top right) Mid-level streamfunction ψ′ as derived
form the algorithm outlined in Chapter 6. (bottom right) Rederived vorticity field ζret as calculated
from ∇2ψ′ = ζret. (bottom right) Squared vorticity difference 0.5(ζ ′ − ζret)2.

126



Appendix B

The eigenvalue problem in annular
geometry

As discussed in Chapter 6, the cylindrical geometry of the experiment means that spectral ex-
pansions are most accurately defined in terms of Fourier-Bessel modes [5]. In this appendix, the
method used for producing the plots in Figure 6.15 is described.

Recall that in Section 6.2, it was stated that any scalar φ defined in a 2D annular domain b > r > a,
with boundary conditions of the form φ(a, θ) = φ(b, θ) = 0, can be expanded in terms of the
complete, orthogonal basis set

φ(r, θ) =
m=+∞∑
m=−∞

n=∞∑
n=1

(
φJmnJm(γmnr) + φYmnYm(γmnr)

)
eimθ (B.1)

with Jm and Ym Bessel functions of the first and second kind, and γmn a constant that can be
determined numerically. The task of finding the special solution to equation (B.1) is made more
complicated by the annular boundary conditions, which do not permit us to remove Ym, as would
be done for a cylindrical domain boundary problem with no inner cylinder.

Firstly, it was necessary to construct a zero-finding program capable of recognising and discarding
discontinuities in the function

Gmn (γmn) =
Jm(γmnb)
Ym(γmnb)

+
Jm(γmna)
Ym(γmna)

(B.2)

which arises from the boundary conditions of (B.1) (see Figure B.1). The bisection method [5] was
used for this purpose, with discontinuities recognised by the criterion |f ′(x0)| > fmax, where fmax is
chosen to be some very large positive number. This took care of the constants γmn. Orthogonality
of the radial eigenmodes was then checked by numerical calculation of the relation∫ b

a
rRkl(γklr)Rkm(γkmr)dr = αlm (B.3)

withRmn(γmnr) ≡ Jmn(γmnr)+Ymn(γmnr). Orthonormality was then imposed by setting alm = δlm
in (B.3). In Figure B.2, some example eigenmodes derived by this method are plotted.

In order to project real experimental data onto these modes, a transformation matrix was con-
structed in Matlab from the complete set of eigenfunctions and inverted. For convenience, an

127



4 6 8 10 12 14 16 18 20
0

5

10

15

20

25

Temperature gradient [K][m
!1

]

H
e
ig

h
t 
[c

m
]

Student Version of MATLAB

LL5

LL1

LL2

LL3

LL4

Figure B.1: Time and r, θ averaged vertical temperature gradient dT/dz from a numerical simulation
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Figure B.2: Blue line shows (B.7) as a function of γ. Green and red dots are the true zeros and
discontinuities respectively, as predicted by the zero-finding Matlab routine.

where akl, bkl, γkl are constants and Jk, Yk are Bessel functions of the first and second kind
respectively. Our task of finding the special solution is made more complicated by the annular
boundary conditions, which do not permit us to remove Yk, as would be done for a full cylindrical
domain {0, b} boundary problem[31].

It was necessary to construct a zero-finding program capable of recognising and discarding discon-
tinuities in the function

Gmn(γmn) =
Jm(γmnb)
Ym(γmnb)

+
Jm(γmna)
Ym(γmna)

(B.7)

which arises from the boundary conditions of (B.6) (see Figure B.2). The bisection method[31] was
used for this purpose, with discontinuities recognised by the criterion |f ′(x0)| > fmax, where fmax

is chosen to be some very large positive number. This took care of the constants γkl and the ratios
akl/bkl. Orthogonality of the radial eigenmodes (B.6) was then checked by numerical calculation
of the relation ∫ b

a
rRkl(γklr)Rkm(γkmr)dr = αlm (B.8)

and orthonormality was imposed (the constants akl were calculated) by setting αlm = δlm in (B.8).
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Figure B.1: Blue line shows B.3 as a function of γ. Green and red dots are the true zeros and
discontinuities respectively, as predicted by the zero-finding Matlab routine.

azimuthal Fourier transform was performed first, and the radial transformation procedure was
performed separately for each mode m.

To derive energy spectra, it was necessary to separately transform azimuthal and radial velocity
fields uθ and ur. Non-slip boundary conditions implied that both fields were equal to zero at r = a,
b, so the general expansion form (B.1) could be used for both quantities. Energy spectra were then
calculated by multiplying each transformed field with its complex conjugate, and summing the two
quantities.
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Figure B.2: Selected annular eigenmodes, as described by equation (B.1).
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Appendix C

Derivation of the 1D spectral energy
transfer equation

Spectral transfer calculations were used in Section 6.2 to study the extent to which eddy-mean flow
interactions dominated when the system was in a steady-state. In this appendix, the derivation of
the spectral transfer equation 6.10 is given.

Given the quasigeostrophic approximation, the momentum equation in absence of forcing and
damping is simply

D0u0 ≡ ∂tu0 + u0 · ∇u0 = −f0 × u1 − f1 × u0 (C.1)

where u0 only has components in the horizontal plane.

We are interested in barotropic nonlinear interactions and so ignore the right hand side of (C.1).
Dropping the zero subscript on geostrophic quantities for convenience and using cylindrical coor-
dinates, the remainder then becomes(

∂

∂t
+ ur

∂

∂r
+
uθ
r

∂

∂θ

)
ur −

u2
θ

r
= 0(

∂

∂t
+ ur

∂

∂r
+
uθ
r

∂

∂θ

)
uθ +

uruθ
r

= 0. (C.2)

Define all variables in terms of their azimuthal Fourier coefficients, e.g.,

uθ(r, θ, t) =
∑
m

eimθuθ,m(r, t). (C.3)

Then substitution of (C.3) into (C.2) followed by a Fourier transform of the entire expression leads
to

∂ur,m
∂t

+
∑

m=p+q

apq = 0

∂uθ,m
∂t

+
∑

m=p+q

bpq = 0 (C.4)
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with the terms apq, bpq defined as

apq(r, t) = ur,pu
′
r,q + iq

uθ,pur,q
r

−
uθ,puθ,q

r

bpq(r, t) = ur,pu
′
θ,q + iq

uθ,puθ,q
r

+
ur,puθ,q

r
. (C.5)

Defining semi-spectral energy as

Em(r, t) =
1
2
(
ur,mu

∗
r,m + uθ,mu

∗
θ,m

)
(C.6)

where ∗ denotes complex conjugate, we can write

∂Em(r, t)
∂t

= Tm(r, t) = −
∑

m=p+q

Tmpq = 0

Tmpq =
1
2
(
u∗r,mapq + u∗θ,mbpq + c.c.

)
. (C.7)

Averaging in time and the radial direction

〈Em(r, t)〉 =
2

T (b2 − a2)

∫ t1

t0

∫ b

a
Em(r, t)rdrdt, (C.8)

where t0 and t1 are starting and finishing times and T = t1 − t0, we arrive at the desired result

Pm =
∂ 〈Em(r, t)〉

∂t
= −

∑
m=p+q

〈Tmpq〉 = 0. (C.9)

In the real experimental system, this quantity will of course be balanced by energy loss due to Ekman
and viscous damping, and energy transfer due to mixed barotropic – baroclinic interactions.
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