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Abstract The evidence for abundant liquid water on early Mars despite the faint young Sun is a
long-standing problem in planetary research. Here we present new ab initio spectroscopic and line-by-line
climate calculations of the warming potential of reduced atmospheres on early Mars. We show that the
strength of both CO2 –H2 and CO2 –CH4 collision-induced absorption (CIA) has previously been significantly
underestimated. Contrary to previous expectations, methane could have acted as a powerful greenhouse
gas on early Mars due to CO2 –CH4 CIA in the critical 250–500 cm−1 spectral window region. In atmospheres
of 0.5 bar CO2 or more, percent levels of H2 or CH4 raise annual mean surface temperatures by tens of
degrees, with temperatures reaching 273 K for pressures of 1.25–2 bars and 2–10% of H2 and CH4. Methane
and hydrogen produced following aqueous alteration of Mars’ crust could have combined with volcanically
outgassed CO2 to form transient atmospheres of this composition 4.5–3.5 Ga. Our results also suggest that
inhabited exoplanets could retain surface liquid water at significant distances from their host stars.

1. Introduction

Today, Mars is cold and dry, with annual mean surface temperatures of around−60∘C and a mainly arid, hyper-
oxidizing surface. In the past, however, a diverse array of geological evidence points to episodically warmer
and wetter conditions. This evidence includes dendritic valley networks distributed over large regions of the
equatorial and southern Noachian highlands, fluvial conglomerates, open-basin lakes, and fluvolacustrine
deposits [Fassett and Head, 2008a; Hynek et al., 2010; Grotzinger et al., 2015].

This evidence for surface aqueous modification is paradoxical, because the Sun’s luminosity was only around
75–80% of its present-day value during the period 3–3.8 Ga when most of the erosion occurred. In combina-
tion with Mars’ distant orbit, this implies cold surface conditions: even given a planetary albedo of zero, early
Mars would have had an equilibrium temperature of only 210 K [Wordsworth, 2016]. Carbon dioxide provides
some greenhouse warming but not enough: climate models that assume pure CO2 –H2O atmospheres consis-
tently predict global mean temperatures of less than 240 K for any surface pressure [Kasting, 1991; Wordsworth
et al., 2013]. Many alternative mechanisms to warm early Mars have subsequently been investigated, including
CO2 clouds [Forget and Pierrehumbert, 1997], large meteorite impacts [Segura et al., 2002], sulfur dioxide emis-
sion from volcanos [Postawko and Kuhn, 1986; Halevy and Head, 2014], and local snowmelt due to diurnal
forcing and/or obliquity and eccentricity variations [e.g., Wordsworth et al., 2013]. However, all suffer short-
comings that render them unlikely as the main explanation [Forget et al., 2013; Ramirez et al., 2014; Kerber et al.,
2015; Wordsworth, 2016].

Reducing greenhouse solutions for early Mars have also been considered previously. Sagan [1977] argued that
early Mars might have been warmed by a hydrogen-dominated atmosphere or by abundant NH3. However,
a hydrogen-dominated atmosphere would be lost to space rapidly after formation and NH3 is photolyzed
rapidly by UV radiation and lacks a plausible Martian source. Later, in a paper focused on the early Earth,
Wordsworth and Pierrehumbert [2013] showed that hydrogen could act as an important greenhouse gas in
terrestrial-type atmospheres even in abundances of a few percent, due to the strength of its collision-induced
absorption in combination with heavier gases like nitrogen. Ramirez et al. [2014] applied this mechanism to
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early Mars, where they argued that H2 emitted from volcanoes into a CO2-dominated atmosphere could have
kept Mars in a “warm and wet” state for periods of tens of millions of years or longer. However, lacking CO2−H2

CIA data they used the same N2 –H2 data as Wordsworth and Pierrehumbert [2013] for their climate calculations.
As a result, they found that> 5% H2 in a 4 bar CO2 atmosphere (20% H2 in a 1.3 bar atmosphere) was required to
raise annual mean surface temperatures to the melting point of liquid water: an amount that is not consistent
with either constraints on the total amount of CO2 present in the Noachian [Hu et al., 2015] or estimates of
the rate of hydrogen escape to space [Ramirez et al., 2014]. Hence, the early Martian faint young Sun paradox
remains unresolved.

Here we describe new spectroscopic and one-dimensional line-by-line climate calculations that we have per-
formed to assess the warming potential of reducing climates on early Mars. We find CO2 –H2 warming to be
significantly more effective than predicted by Ramirez et al. [2014] due to the strong polarizability and multi-
pole moments of CO2. Furthermore, we show for the first time that methane (CH4) could have been an effective
warming agent on early Mars, due to the peak of CO2 –CH4 CIA in a key spectral window region. We pro-
pose that early Mars could have been transiently warmed by emission of these gases due to crustal aqueous
alteration, volcanism, and impact events. Our results also have implications for the habitability of exoplanets
that orbit far from their host stars.

2. Methods

To calculate the collision-induced absorption spectra for CO2 –CH4 and CO2 –H2 pairs, we first acquired the
potential energy surface (PES) and induced dipole surface (IDS) for the relevant molecular complex. The PES
for CO2 –H2 calculated at the coupled-cluster level was taken from the literature [Li et al., 2010]. For the IDS for
CO2 –H2 and both the PES and IDS for CO2 –CH4, we performed the ab initio calculations ourselves. Once the
ab initio data were acquired, the zeroth spectral moment for the system was calculated as

Γ̃ = 32𝜋4

3hc ∫
∞

0 ∫Ω
𝜇(R,Ω)2e−V(R,Ω)∕kBT R2dRdΩ, (1)

where h is Planck’s constant, c is the speed of light, R is the separation of the molecular centers of mass,
Ω is solid angle, V is the PES, 𝜇 is the IDS, kB is Boltzmann’s constant, and T is temperature [Frommhold, 2006].

We assessed the climate effects of the new CIA coefficients using a new iterative line-by-line spectral code
[Wordsworth, 2016; Schaefer et al., 2016]. Using this model allowed us to perform extremely high accuracy
globally averaged calculations while spanning a wide range of atmospheric compositions. The code has been
validated against a number of analytic results and previous radiative-convective calculations. Further details
of our CIA and line-by-line climate calculations are given in the supporting information [Cherepanov et al.,
2016; Boys and Bernardi, 1970; Knizia et al., 2009; Cohen and Roothaan, 1965; Clough et al., 1992; Rothman
et al., 2013; Murphy and Koop, 2005; Gruszka and Borysow, 1997; Baranov et al., 2004; Wordsworth et al., 2010;
Pierrehumbert, 2011; Hansen and Travis, 1974; Claire et al., 2012; Béguier et al., 2015; Goldblatt et al., 2013;
Schaefer et al., 2016].

3. Results

First, we compared the CO2 –H2 and CO2 –CH4 CIA coefficients we calculated with previously derived N2 –H2

and N2 –CH4 CIA data [Borysow and Frommhold, 1986; Borysow and Tang, 1993; Richard et al., 2012]. Figure 1
shows that the peak values of the CO2 CIA coefficients are significantly stronger than the previously calculated
N2 data. The difference can be explained by the higher electronegativity of oxygen than carbon, which leads to
a more heterogenous electron density distribution for CO2 than for N2. This in turn leads to stronger multipole
moments and a higher polarizability, which enhances CIA. For example, the quadrupole moment of CO2 is
approximately 3 times greater than that of N2 [Graham et al., 1998]. A significant portion of CIA scales with the
square of the quadrupole moment, leading to a factor of ∼9 increase (cf. the coefficients in Figure 1). The CO2

enhancement effect is particularly significant for climate because both pairs absorb significantly between 250
and 500 cm−1: a key spectral window region for the Martian climate [Wordsworth, 2016].

These increased opacities translate directly to higher surface temperatures in climate calculations. Figure 2a
shows the result of calculating surface temperature using both our new CO2-H2 data and (incorrectly) using
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Figure 1. Total vertical path optical depth due to CO2 (gray), CO2 –CH4 CIA (blue) and CO2-H2 CIA (red) in the early
Martian atmosphere, assuming a pressure of 1 bar, composition 94% CO2, 3% CH4, 3% H2, and surface temperature of
250 K. Dotted lines show optical depth from CIA when the absorption coefficients of CO2-H2 and CO2 –CH4 are replaced
by those of N2 –H2 and N2 –CH4, respectively. Both the CO2 –H2 and CO2 –CH4 CIA are strong in a critical window region
of the spectrum where absorption by pure CO2 is weak.

N2 –H2 as a substitute for CO2 –H2. As can be seen, the difference is significant, with surface temperatures
increasing by many tens of degrees for H2 abundances greater than a few percent. Global mean temperatures
exceed 273 K for H2 molar concentrations from 2.5 to 10%, depending on the background CO2 pressure.

Next, we studied the effects of methane. In the past, methane has not been regarded as an effective early
Martian greenhouse gas because its first vibration-rotation absorption band peaks at 1300 cm−1, too far from
the blackbody emission spectrum peak at 250–300 K to reduce the outgoing longwave radiation significantly
[Ramirez et al., 2014; Wordsworth, 2016]. Methane also absorbs incoming solar radiation significantly in the
near-infrared [Brown et al., 2013]. We find strong CH4 near-IR absorption, leading to a temperature inversion
in the high atmosphere when CH4 is present. Hence, although CH4 near-IR absorption decreases planetary
albedo, its net effect is to slightly decrease surface temperatures in the absence of other effects (Figure 2b).

Despite its antigreenhouse properties in the near-IR, we nonetheless find that at high abundance, methane
can also act as an important greenhouse gas on early Mars. This occurs because the CO2 –CH4 CIA absorption

Figure 2. Surface temperature in CO2-dominated atmospheres as a function of (a) H2 and (b) CH4 molar concentration for various surface pressures ps . The solid
lines show results calculated using our new CIA coefficients, while dash-dotted lines show results using N2 –H2 and N2 –CH4 CIA coefficients in place of the
correct coefficients. In Figure 2b, the dashed line shows the case at 1 bar where CH4 CIA is removed entirely, demonstrating that without it, methane actually
has an antigreenhouse effect. (c) Both H2 and CH4 are present in equal amounts. Note the change of scale on the x axis compared to Figures 2a and 2b.
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peaks in the key 250 to 500 cm−1 window region. We find that adding 5% CH4 increases global mean tem-
peratures by up to ∼30 K, depending on the background CO2 pressure (Figure 2). Finally, when CH4 and H2

are combined in equal proportions, only 3.5% of each gas is required to achieve 273 K given a 1.5 bar atmo-
sphere (Figure 2). Note that 273 K may be an upper limit on the global mean temperature required to explain
valley network formation due to the importance of local and seasonal effects in determining runoff [see, e.g.,
Wordsworth et al., 2013; Kite et al., 2013; Rosenberg and Head, 2015].

4. Discussion

Our spectroscopic CIA and line-by-line climate calculations have shown that a combination of reducing gases
in the early Martian atmosphere could potentially solve the faint young Sun problem. But is such a solu-
tion physically and chemically plausible? While the abundances of methane and hydrogen on Mars today are
extremely low [Webster et al., 2015], highly reducing atmospheres are observed elsewhere in the solar system:
Titan has a 1.5 bar N2 dominated atmosphere with CH4 levels of 4.9% (mole fraction) near the surface [Niemann
et al., 2005]. Titan’s methane is destroyed by photochemistry on a timescale of order 10 Myr [Lunine and Atreya,
2008] and is most likely replenished episodically due to destabilization of methane clathrates in the subsurface
[Tobie et al., 2006].

Mars today has a highly oxidized surface and atmosphere due to hydrogen loss to space over geological
time. However, early on methane and hydrogen may have been episodically released from the subsurface in
quantities sufficient to raise surface temperatures. Serpentinization, a process in which mafic minerals such
as olivine are hydrothermally altered to produce reducing gases, has been proposed as the ultimate origin of
the CH4 on Titan [Tobie et al., 2006]. Serpentine deposits have been observed on the Martian surface at Nili
Fossae, Isidis Basin, and in some southern highland impact craters [Ehlmann et al., 2010]. Extensive serpen-
tinization may also have occurred on early Mars in the deep olivine-rich crust [Chassefière et al., 2013]. Study
of terrestrial analogs suggests that low-temperature alteration of Martian ultramafic rocks would be capable
of producing of order 1012 –1014 molecules/cm2/s of CH4 in local active regions [Etiope et al., 2013]. If 5% of
the early Martian crust was rich enough in olivine for serpentinization, this translates to a global CH4 emission
rate of 5 × 1010 –1012 molecules/cm2/s (Figure 3).

Volcanism is another source of reduced gases, particularly of H2. Hydrogen outgassing is highest if the oxygen
fugacity of the early Martian mantle was extremely low [Ramirez et al., 2014; Batalha et al., 2015]. An important
problem with volcanism as the sole source of reduced gases, however, is that a mantle reducing enough to
outgas sufficient H2 directly would outgas CO2 less efficiently, instead retaining large amounts of carbon in
the melt [Hirschmann and Withers, 2008; Wetzel et al., 2013]. A third potential reduced gas source is CH4 and
H2 production due to atmospheric thermochemistry following large meteorite impacts. Because peak valley
network formation occurs toward the end of the Noachian, a period of higher impact flux than today [Fassett
and Head, 2008b, 2011], this mechanism deserves detailed investigation in future.

Once outgassed, the primary sinks for CH4 and H2 on early Mars would have been chemical destruction of
CH4 and escape of H2 to space. The lifetime of methane in an atmosphere in which it is abundant is con-
trolled by photodissociation, which is primarily powered by Lyman 𝛼 photons (see supporting information).
Previous detailed photochemical modeling has shown that this limit is approached in CO2-rich atmospheres
when fCH4

> 0.1–1% [Zahnle, 1986]. Using an estimate of the solar XUV flux at 3.8 Ga at Mars’ semimajor
axis as in Wordsworth and Pierrehumbert [2013] and integrating the solar flux up to 160 nm, the wavelength
above which the absorption cross section of CH4 becomes negligible [Chen and Wu, 2004], we calculate an
upper limit CH4 photodestruction rate of 2.5–3.2 × 1011 molecules/cm2/s. This corresponds to a methane
residence time of about 250,000 years starting from 5% CH4 in a 1.25 bar CO2 atmosphere. Note that this
estimate ignores chemical recycling of dissociated CH4 in the atmosphere and the decrease in XUV flux due
to absorption by escaping hydrogen higher up in the atmosphere, both of which would increase the CH4

residence time.

The escape of H2 to space on early Mars would most likely have been limited by diffusion through the
homopause, with a characteristic rate of

ΦH2
≈

bCO2−H2

HCO2

fH2
(2)
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Figure 3. Schematic of key processes on early Mars in the transient reducing atmosphere scenario. Highland ice
deposits created by adiabatic cooling under a denser CO2 atmosphere are episodically melted by H2∕CH4 warming,
leading to runoff, lake formation and fluvial erosion.

where bCO2−H2
is the CO2 –H2 binary collision coefficient, HCO2

is the atmospheric scale height, and fH2
is the

hydrogen molar mixing ratio at the homopause. For hydrogen levels of 1–5% and a homopause temperature
range of 150 to 500 K, we find ΦH2

= 0.9–6.3 × 1011 molecules/cm2/s: approximately the same magnitude
as the maximum rate of CH4 photolysis. Hence, a pulse of CH4 emission into the early Martian atmosphere
would result in a mixed CO2 –CH4 –H2 composition that would last for a period of 100,000 years or more. This
timescale is more than sufficient to account for the formation of deposits in Gale crater, given the uncertainty
range in sedimentation rates [Grotzinger et al., 2015]. It is lower than some timescales estimated for valley
network formation based on numerical runoff/erosion modeling [Hoke et al., 2011] but is consistent with
others [Rosenberg and Head, 2015], at least if a high discharge frequency is assumed. Coupled climate and
landform evolution modelling in future will be necessary to test whether ∼ 105 years formation timescales
are indeed sufficient to explain all Noachian fluvial geomorphology.

What mechanism could cause pulses in reduced gas outgassing rates simply local variations in the geother-
mal heat flux, which would alter the rate of subsurface aqueous alteration. Another is the contribution of
impactors to the atmospheric H2 and CH4 inventory. A third possibility is CH4 clathration [Lasue et al., 2015].
Due to adiabatic cooling of the surface under a denser CO2 atmosphere, most of Mars’ surface ice would have
stabilized in the southern highlands [Wordsworth et al., 2013], in the regions where most serpentine has been
detected from orbit [Ehlmann et al., 2010]. Hence, a substantial portion of outgassed methane could have
become trapped as clathrate in the cryosphere. Episodic CH4 release following large perturbations due to
volcanism, impacts, or obliquity changes would have destabilized clathrates by altering thermal forcing
and by sublimation/melting of the overlying ice. Once released, methane and H2 would cause greenhouse
warming, leading to a positive feedback that would destabilize the remaining ice.

Finally, transient CH4∕H2 emissions also require CO2 levels of 0.5 bar or greater to significantly impact surface
temperature. From the late Noachian onward, atmospheric CO2 levels were determined by a balance between
volcanic outgassing, escape to space, and surface carbonate formation. During this period, coupled modeling
of the 13C∕12C isotope ratio has constrained Mars’ maximum atmospheric pressure to between 1 and 1.8 bars
[Hu et al., 2015]. While the upper value is a hard limit, the CO2 pressures we require to cause significant CH4∕H2

warming are nonetheless within current evolutionary constraints.

A CO2 –CH4 atmosphere on early Mars would not develop a thick haze as on Titan because organic aerosol
formation is strongly inhibited for C/O ratios of 0.6 or lower [Zahnle, 1986; Trainer et al., 2006]. However,
reaction of atmospheric CH4 with oxygen from CO2 photolysis could lead to increased stratospheric H2O.
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This would cause increased formation of high-altitude cirrus clouds, which would enhance warming [Urata
and Toon, 2013], reducing the background CO2 requirements beyond the baseline calculations shown here.
We plan to investigate this possibility in detail in future work.

5. Conclusion

We have produced the first physically realistic calculations of reducing greenhouse warming on early Mars.
Our results suggest that with just over 1 bar of atmospheric CO2, a few percent of H2 and/or CH4 would have
raised surface temperatures to the point where the hydrological cycle would have been vigorous enough
to explain the geological observations. Other effects, particularly the contribution of methane photolysis to
cirrus cloud formation, may lower these CO2 and H2∕CH4 abundance requirements further and deserve
detailed investigation (probably with a 3-D climate model) in future.

Our CIA calculation methodology has been validated against existing data for N2 − H2 and N2 − CH4 pairs.
Nonetheless, the complexity of CIA interactions involving CH4 means that it may not capture all differences
between the N2 –CH4 and CO2 –CH4 systems. For this reason we strongly encourage the experimental investi-
gation of CO2 –CH4 CIA in the future. Testing other aspects of the reducing atmosphere scenario for early Mars
will require better constraints on the rate of crustal H2∕CH4 production during the Noachian and the nature
of the early water cycle. Future investigation of the detailed chemical composition of the Martian crust and
mantle, along with a continued search for serpentine and other hydrated minerals, will be important to make
further progress.

Besides early Mars, our results have implications for exoplanet habitability and the search for biosignatures.
Current definitions of the outer edge of the habitable zone rely on either CO2 or H2 and assume that a
biosphere would have a detrimental effect on habitability via methanogenic consumption of these gases
[e.g., Pierrehumbert and Gaidos, 2011]. However, the apparent strength of CO2 –CH4 CIA means that an
inhabited planet could potentially retain a stable climate at great distances from its host star.
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