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Lecture Notes 10:

Hardcore Bits

Recommended Reading.

• Katz-Lindell 6.1.3, 6.3

1 Hardcore Bits

Motivation: If f is a OWF, it is hard to determine x from f(x), but is it also hard to compute a

particular bit of x from f(x), say the �rst bit of x? Random guessing gives a probability of success

of 1
2 but some bits might be even easier to guess. A few examples:

A one-way function can reveal a large part of its input: is there a fraction of the bits of the

input which is always �well-hidden�? (i.e. any polynomial-time algorithm cannot have a nonnegligible

advantage over random guessing when computing those bits from the output of the function) The

answer is no, because we can construct one-way functions such that each bit of x can be obtained

from f(x) with high probability. Thus, we instead look for some �bit of information� which is hard

to compute.

De�nition 1 b : {0, 1}∗ → {0, 1} is a hardcore bit (or hardcore predicate) for one-way function f
if

• b is polynomial-time computable.

• For every PPT A, there is a negligible function ε such that

Pr [A(f(X)) = b(X)] ≤ 1
2

+ ε(n) ∀n,

where the probability is over X
R←{0, 1}n and the coin tosses of A.

De�nition 2 {bkey : Dkey → {0, 1}}key∈K is a collection of hardcore bits for the collection of one-

way functions F = {fkey : Dkey → Rkey} if

• Given key ∈ K and x ∈ Dkey, bkey(x) can be computed in polynomial time.
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• For every PPT A, there is a negligible function ε such that

Pr [A(1n,K, fK(X)) = bK(X)] ≤ 1
2

+ ε(n) ∀n,

where the probability is taken over K
R←G(1n), X

R←DK , and the coin tosses of A.

2 Examples

RSA functions • The least signi�cant bit is a hardcore bit for RSA:

lsbN,e : Z∗
N 7→ {0, 1}

Given N, e, xe mod N , we cannot compute lsbN,e(x) with a nonnegligible advantage over

random guessing.

• De�ne halfN (x) by halfN (x) = 0 if 0 ≤ x < N/2 and 1 otherwise (halfN (x) is like the

most signi�cant bit of x). halfN (x) is a hardcore bit for RSA.

Rabin's functions • The least signi�cant bit is a hardcore bit for Rabin's functions:

lsbN : Z∗
N 7→ {0, 1}

Given N,x2 mod N , we cannot compute lsbN (x) with a nonnegligible advantage over

random guessing.

• halfN (x) is a hardcore bit for Rabin's functions.

Modular Exponentiation/Discrete Log halfp−1(x) is a hardcore bit for Modular Exponentia-

tion.

3 Goldreich�Levin hardcore bit

Does every one-way function have a hardcore bit? The following theorem proves that from any

arbitrary OWF, we can construct a OWF with a hardcore bit by taking the XOR of a random

subset of bits. For x, r ∈ {0, 1}n, de�ne 〈x, r〉 =
∑

i xiri mod 2 = ⊕i|ri=1xi.

Theorem 3 (Goldreich�Levin hardcore bit) Let f be any one-way function, and de�ne f ′(x, r) =
(f(x), r) for ||x|| = ||r||. Then 〈x, r〉 is a hardcore bit for f ′.

This theorem is most interesting when f is one-to-one. Note that if f is one-to-one, then so is f ′.

Proof ideas:

Reducibility argument: Suppose that there exists a PPT A that predicts 〈x, r〉 from (f(x), r)
with nonnegligible advantage over random guessing. We construct a PPT B that uses A to

invert f with nonnegligible probability.

�Easy� case: Assume that A(f(x), r) computes the hardcore bit 〈x, r〉 with probability 1.

Observation 1: Let e(i) = (0 · · · 010 · · · 0) (1 in the i'th position and 0 elsewhere). We observe

that 〈x, e(i)〉 = xi. We de�ne B(y) as follows:
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• Let wi = A(y, e(i)) for 1 ≤ i ≤ n

• Output w1 · · ·wn

�Medium� case We assume that A(f(x), r) computes the hardcore bit 〈x, r〉 with probability

≥ 3
4 + ε(n), where ε is a nonnegligible function and the probability is taken over the random

input x and the coin tosses of A. We have a problem generalizing the argument used in the

easy case because A is only guaranteed to succeed on random (x, r): we do not know how A
behaves if r is not random (such as for r = e(i)).

Observation 2: 〈x, r〉 ⊕ 〈x, r ⊕ e(i)〉 = 〈x, e(i)〉 = xi because

If r is chosen at random then so is r ⊕ e(i).

Attempt #1 to de�ne B(y)

• Choose r at random.

• For 1 ≤ i ≤ n, compute wi = A(y, r)⊕A(y, r ⊕ e(i)).

• Output w1 · · ·wn.

Pr
X,R

A(f(X), R) 6= 〈X, R〉 ≤ 1
4
− ε

Pr
X,R

A(f(X), R⊕ e(i)) 6= 〈f(X), R⊕ e(i)〉 ≤ 1
4
− ε

These two probabilities are not independent so we cannot multiply them together to obtain

the probability that wi 6= xi. Using the Union bound, we get that Pr [Wi 6= Xi] ≤ 1
2 − 2ε.

With this algorithm B, we only expect to recover slightly more than 1/2 of the bits of x. To
avoid this problem, we will repeat the algorithm t times with t random choices of r for each

bit of x.

Final algorithm B(y)

• Choose r(1), r(2), · · · , r(t) at random (t = Θ
(

n
ε2

)
).

• For 1 ≤ i ≤ n, de�ne wi = maj{A
(
y, r(j)

)
⊕A

(
y, r(j) ⊕ e(i)

)
: j = 1, . . . , t}. �maj� means

that we take a majority vote over the t trials.

• Output w1 · · ·wn.

Analysis We cannot immediately apply the Cherno� bound in this case as the probabilities

are not independent because we are always using the same input y.

A computes 〈X, R〉 from (f(X), R) (X, R are random variables) with probability of success

greater than 3
4 + ε. This imples that for at least ε/2 fraction of x, Pr [A(f(x), R) = 〈x,R〉] ≥
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3/4+ε/2 (probability just over R and the coin tosses of A). Call these good x. For each good x
and each i ∈ {1, . . . , n}, Pr [A(f(x), R)⊕A(f(x), R⊕ ei) 6= xi] ≤ 2·(1−(3/4+ε/2)) = 1/2−ε.

Thus, the above algorithm inverts f with high probability on f(x) for each good x (for a total

success probability of ≈ ε/2).

General case (A computes hardcore bit with probability 1/2 + ε) requires additional ideas.

Theorem 4 (Goldreich-Levin hardcore bit for collections) Let F = {fi : Domi → Rngi} be
any collection of one-way function, and de�ne gi,r(x) = fi(x), bi,r(x) = 〈x, r〉. Then {bi,r : Domi →
Rngi} is a collection of hardcore bits for the collection of one-way functions {gi,r : Domi → Rngi}.
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