CS 120: Introduction to Cryptography
Salil Vadhan and Alon Rosen
Oct. 19, 2006

Lecture Notes 10:

Hardcore Bits

Recommended Reading.

- Katz-Lindell 6.1.3, 6.3

1 Hardcore Bits

Motivation: If f is a OWF, it is hard to determine x from $f(x)$, but is it also hard to compute a particular bit of x from $f(x)$, say the first bit of x ? Random guessing gives a probability of success of $\frac{1}{2}$ but some bits might be even easier to guess. A few examples:

A one-way function can reveal a large part of its input: is there a fraction of the bits of the input which is always "well-hidden"? (i.e. any polynomial-time algorithm cannot have a nonnegligible advantage over random guessing when computing those bits from the output of the function) The answer is no, because we can construct one-way functions such that each bit of x can be obtained from $f(x)$ with high probability. Thus, we instead look for some "bit of information" which is hard to compute.

Definition $1 b:\{0,1\}^{*} \rightarrow\{0,1\}$ is a hardcore bit (or hardcore predicate) for one-way function f if

- b is polynomial-time computable.
- For every PPT A, there is a negligible function ε such that

$$
\operatorname{Pr}[A(f(X))=b(X)] \leq \frac{1}{2}+\varepsilon(n) \quad \forall n,
$$

where the probability is over $X \stackrel{R}{\leftarrow}\{0,1\}^{n}$ and the coin tosses of A.
Definition $2\left\{b_{\text {key }}: D_{\text {key }} \rightarrow\{0,1\}\right\}_{\text {key } \in \mathcal{K}}$ is a collection of hardcore bits for the collection of oneway functions $\mathcal{F}=\left\{f_{\text {key }}: D_{\text {key }} \rightarrow R_{\text {key }}\right\}$ if

- Given key $\in \mathcal{K}$ and $x \in D_{\text {key }}, b_{\text {key }}(x)$ can be computed in polynomial time.
- For every PPT A, there is a negligible function ε such that

$$
\operatorname{Pr}\left[A\left(1^{n}, K, f_{K}(X)\right)=b_{K}(X)\right] \leq \frac{1}{2}+\varepsilon(n) \quad \forall n
$$

where the probability is taken over $K \stackrel{R}{\leftarrow} G\left(1^{n}\right), X \stackrel{R}{\leftarrow} D_{K}$, and the coin tosses of A.

2 Examples

RSA functions - The least significant bit is a hardcore bit for RSA:

$$
\operatorname{lsb}_{N, e}: \mathbb{Z}_{N}^{*} \mapsto\{0,1\}
$$

Given $N, e, x^{e} \bmod N$, we cannot compute $\operatorname{lsb}_{N, e}(x)$ with a nonnegligible advantage over random guessing.

- Define half ${ }_{N}(x)$ by half ${ }_{N}(x)=0$ if $0 \leq x<N / 2$ and 1 otherwise (half ${ }_{N}(x)$ is like the most significant bit of x). $\operatorname{half}_{N}(x)$ is a hardcore bit for RSA.

Rabin's functions

- The least significant bit is a hardcore bit for Rabin's functions:

$$
\operatorname{lsb}_{N}: \mathbb{Z}_{N}^{*} \mapsto\{0,1\}
$$

Given $N, x^{2} \bmod N$, we cannot compute $\operatorname{lsb}_{N}(x)$ with a nonnegligible advantage over random guessing.

- half $_{N}(x)$ is a hardcore bit for Rabin's functions.

Modular Exponentiation/Discrete Log half $\operatorname{pos}^{1}(x)$ is a hardcore bit for Modular Exponentiation.

3 Goldreich-Levin hardcore bit

Does every one-way function have a hardcore bit? The following theorem proves that from any arbitrary OWF, we can construct a OWF with a hardcore bit by taking the XOR of a random subset of bits. For $x, r \in\{0,1\}^{n}$, define $\langle x, r\rangle=\sum_{i} x_{i} r_{i} \bmod 2=\oplus_{i \mid r_{i}=1} x_{i}$.

Theorem 3 (Goldreich-Levin hardcore bit) Let f be any one-way function, and define $f^{\prime}(x, r)=$ $(f(x), r)$ for $\|x\|=\|r\|$. Then $\langle x, r\rangle$ is a hardcore bit for f^{\prime}.

This theorem is most interesting when f is one-to-one. Note that if f is one-to-one, then so is f^{\prime}.

Proof ideas:

Reducibility argument: Suppose that there exists a PPT A that predicts $\langle x, r\rangle$ from $(f(x), r)$ with nonnegligible advantage over random guessing. We construct a PPT B that uses A to invert f with nonnegligible probability.
"Easy" case: Assume that $A(f(x), r)$ computes the hardcore bit $\langle x, r\rangle$ with probability 1.
Observation 1: Let $e^{(i)}=(0 \cdots 010 \cdots 0)(1$ in the i 'th position and 0 elsewhere). We observe that $\left\langle x, e^{(i)}\right\rangle=x_{i}$. We define $B(y)$ as follows:

- Let $w_{i}=A\left(y, e^{(i)}\right)$ for $1 \leq i \leq n$
- Output $w_{1} \cdots w_{n}$
"Medium" case We assume that $A(f(x), r)$ computes the hardcore bit $\langle x, r\rangle$ with probability $\geq \frac{3}{4}+\varepsilon(n)$, where ε is a nonnegligible function and the probability is taken over the random input x and the coin tosses of A. We have a problem generalizing the argument used in the easy case because A is only guaranteed to succeed on $\operatorname{random}(x, r)$: we do not know how A behaves if r is not random (such as for $r=e^{(i)}$).
Observation 2: $\langle x, r\rangle \oplus\left\langle x, r \oplus e^{(i)}\right\rangle=\left\langle x, e^{(i)}\right\rangle=x_{i}$ because

If r is chosen at random then so is $r \oplus e^{(i)}$.

Attempt \#1 to define B(y)

- Choose r at random.
- For $1 \leq i \leq n$, compute $w_{i}=A(y, r) \oplus A\left(y, r \oplus e^{(i)}\right)$.
- Output $w_{1} \cdots w_{n}$.

$$
\begin{gathered}
\operatorname{Pr}_{X, R} A(f(X), R) \neq\langle X, R\rangle \leq \frac{1}{4}-\varepsilon \\
\operatorname{Pr}_{X, R} A\left(f(X), R \oplus e^{(i)}\right) \neq\left\langle f(X), R \oplus e^{(i)}\right\rangle \leq \frac{1}{4}-\varepsilon
\end{gathered}
$$

These two probabilities are not independent so we cannot multiply them together to obtain the probability that $w_{i} \neq x_{i}$. Using the Union bound, we get that $\operatorname{Pr}\left[W_{i} \neq X_{i}\right] \leq \frac{1}{2}-2 \varepsilon$. With this algorithm B, we only expect to recover slightly more than $1 / 2$ of the bits of x. To avoid this problem, we will repeat the algorithm t times with t random choices of r for each bit of x.

Final algorithm $B(y)$

- Choose $r^{(1)}, r^{(2)}, \cdots, r^{(t)}$ at random $\left(t=\Theta\left(\frac{n}{\varepsilon^{2}}\right)\right)$.
- For $1 \leq i \leq n$, define $w_{i}=\operatorname{maj}\left\{A\left(y, r^{(j)}\right) \oplus A\left(y, r^{(j)} \oplus e^{(i)}\right): j=1, \ldots, t\right\}$. "maj" means that we take a majority vote over the t trials.
- Output $w_{1} \cdots w_{n}$.

Analysis We cannot immediately apply the Chernoff bound in this case as the probabilities are not independent because we are always using the same input y.
A computes $\langle X, R\rangle$ from $(f(X), R)$ (X, R are random variables) with probability of success greater than $\frac{3}{4}+\varepsilon$. This imples that for at least $\varepsilon / 2$ fraction of $x, \operatorname{Pr}[A(f(x), R)=\langle x, R\rangle] \geq$
$3 / 4+\varepsilon / 2$ (probability just over R and the coin tosses of A). Call these good x. For each good x and each $i \in\{1, \ldots, n\}, \operatorname{Pr}\left[A(f(x), R) \oplus A\left(f(x), R \oplus e_{i}\right) \neq x_{i}\right] \leq 2 \cdot(1-(3 / 4+\varepsilon / 2))=1 / 2-\varepsilon$. Thus, the above algorithm inverts f with high probability on $f(x)$ for each good x (for a total success probability of $\approx \varepsilon / 2$).

General case (A computes hardcore bit with probability $1 / 2+\varepsilon$) requires additional ideas.
Theorem 4 (Goldreich-Levin hardcore bit for collections) Let $\mathcal{F}=\left\{f_{i}: \operatorname{Dom}_{i} \rightarrow \operatorname{Rng}_{i}\right\}$ be any collection of one-way function, and define $g_{i, r}(x)=f_{i}(x), b_{i, r}(x)=\langle x, r\rangle$. Then $\left\{b_{i, r}: \operatorname{Dom}_{i} \rightarrow\right.$ $\left.\mathrm{Rng}_{i}\right\}$ is a collection of hardcore bits for the collection of one-way functions $\left\{g_{i, r}: \operatorname{Dom}_{i} \rightarrow \operatorname{Rng}_{i}\right\}$.

