CS 120/CSCI E-177: Introduction to Cryptography

Salil Vadhan and Alon Rosen

Oct. 26, 2006

Lecture Notes 11:

Constructing Pseudorandom Generators

Recommended Reading.

• Katz-Lindell §6.4.

We will prove:

Theorem 1 If one-way permutations exist, then pseudorandom generators exist (for any expansion function $\ell(n) = poly(n)$).

The construction consists of two stages:

- One-way permutations + hardcore bit \Rightarrow PRGs that stretch by 1 bit
- PRGs with 1-bit stretch \Rightarrow PRGs with "arbitrary" stretch.

1 Hardcore Bits \Rightarrow PRGs with 1-bit Stretch

Theorem 2 If f is a one-way permutation with hardcore bit b, then G(s) = f(s)b(s) is a pseudorandom generator.

Proof:

- 1. Suppose there is a PPT D that distinguishes between G(S) = f(S)b(S) and $U_{n+1} = f(S)R$ with nonnegligible advantage ε (where $S \stackrel{\mathbb{R}}{\leftarrow} \{0,1\}^n$ and $R \stackrel{\mathbb{R}}{\leftarrow} \{0,1\}$).
- 2. Then D distinguishes between $Y_0 = f(S)b(S)$ and $Y_1 = f(S)\overline{b(S)}$ with advantage 2ε .
- 3. We can construct a PPT A that predicts C from $Y_C = f(S) \circ (b(S) \oplus C)$, where $C \stackrel{\mathbb{R}}{\leftarrow} \{0, 1\}$, with probability at least $1/2 + \varepsilon$.
- 4. $B(f(S)) = A(f(S)C') \oplus C'$, where $C' \stackrel{\mathbb{R}}{\leftarrow} \{0, 1\}$, predicts b(S) with probability at least $1/2 + \varepsilon$. This contradicts the definition of hardcore bit.

2 Increasing the Expansion

First attempt: run G with many independent seeds.

Theorem 3 Let $G : \{0,1\}^n \to \{0,1\}^{n+1}$ be a PRG. Then $G'(s_1s_2\cdots s_\ell) = G(s_1)G(s_2)\cdots G(s_\ell)$ is a PRG for any $\ell \leq \text{poly}(n)$.

Proof: "Hybrid technique". For $i = 0, ..., \ell$, define the *hybrid* $H_i = R_1 R_2 \cdots R_i G(S_{i+1}) \cdots G(S_\ell)$, where $R_j \stackrel{\mathbb{R}}{\leftarrow} \{0,1\}^{n+1}$ and $S_j \stackrel{\mathbb{R}}{\leftarrow} \{0,1\}^n$. Then $H_0 \equiv G'(U_{\ell n})$ and $H_\ell \equiv U_{\ell n+\ell}$.

Suppose that G' is not a PRG: there exists a PPT D such that:

$$\Pr\left[D(G'(U_{\ell n}))=1\right] - \Pr\left[D(U_{\ell})=1\right] > \varepsilon$$

where ε is nonnegligible. This inequality can be rewritten using the hybrids H_i :

$$\sum_{i=0}^{\ell-1} \left(\Pr\left[D(H_i) = 1 \right] - \Pr\left[D(H_{i+1}) = 1 \right] \right) > \varepsilon,$$

so there exists an i such that

$$\Pr\left[D(H_i)=1\right] - \Pr\left[D(H_{i+1})=1\right] > \frac{\varepsilon}{\ell}.$$

Then the PPT $D'(x) = D(R_1 \cdots R_i x G(S_{i+2}) \cdots G(S_\ell))$ distinguishes $G(S_{i+1}) \equiv G(U_n)$ from $R_{i+1} \equiv U_{n+1}$ with advantage ε/ℓ . $\Rightarrow \Leftarrow$

Better approach: composition.

Theorem 4 Let $G: \{0,1\}^n \to \{0,1\}^{n+1}$ be a PRG. Define $G_\ell(s_0) = b_1 b_2 \cdots b_\ell$, where $s_{i+1}b_{i+1} \stackrel{\text{def}}{=} G(s_i)$ for $i = 0, \ldots, \ell - 1$. Then, for any $\ell \leq \operatorname{poly}(n)$, G_ℓ is a PRG with expansion ℓ .

Proof: Intuition: $G(s_0) = (s_1, b_1)$ looks random & independent, so $(G(s_1), b_1) = (s_2, b_2, b_1)$ looks random & independent, etc. To formalize this, we will use the hybrid technique. For $i = 0, \ldots, \ell$, define $H_i = U_i \circ G_{\ell-i}(U_n)$. Then $H_0 = G_\ell(U_n)$, $H_\ell = U_\ell$.

As above, if G_{ℓ} is not a PRG, then there exists a PPT D such such that

$$\Pr\left[D(H_i)=1\right] - \Pr\left[D(H_{i+1})=1\right] > \frac{\varepsilon}{\ell}$$

where ε is nonnegligible. Define the PPT D'(y):

- 1. Write $y = s_{i+1}b_{i+1}$ where $|s_{i+1}| = n$.
- 2. Choose $b_1, \ldots, b_i \stackrel{\mathbb{R}}{\leftarrow} \{0, 1\}$.
- 3. Let $b_{i+2} \cdots b_{\ell} = G_{\ell-i-1}(s_{i+1})$.
- 4. Run $D(b_1 \cdots b_\ell)$

If $y \leftarrow G(U_n)$, then D is fed with $b_1 \cdots b_\ell \leftarrow H_i$. If $y \leftarrow U_{n+1}$, then D is fed with $b_1 \cdots b_\ell \leftarrow H_{i+1}$.

Thus,

$$\Pr\left[D'(G(U_n))=1\right] - \Pr\left[D'(U_{n+1})=1\right] > \frac{\varepsilon}{\ell}$$

 ε is nonnegligible and ℓ is a polynomial so $\frac{\varepsilon}{\ell}$ is nonnegligible, contradicting the assumption that G is a pseudorandom generator.

Generator obtained from above two theorems

If f is a one-way permutation with hardcore bit b, $G(x) = b(x)b(f(x))b(f(f(x)))\cdots b(f^{\ell}(x))$.

- The bits can be computed *on-line*, if we remember the current value of $s_i = f^i(s_0)$. To output a new bit, we output $b(s_i)$ and update $s_{i+1} \leftarrow f(s_i)$.
- The construction does not depend on ℓ : the stretch doesn't have to be determined in advance. (Note that the security degrades linearly with the number of bits produced, i.e. the adversary's advantage increases)
- This construction also works for collections of one-way permutations.

$$G(r_1, r_2) = b_{\text{key}}(x)b_{\text{key}}(f_{\text{key}}(x))\cdots b_{\text{key}}(f_{\text{key}}^{\ell}(x))$$

where r_1 are the coin tosses used to select $\text{key} \stackrel{\text{R}}{\leftarrow} G(1^n)$ and r_2 are the coin tosses to sample $x \stackrel{\text{R}}{\leftarrow} D_{\text{key}}$. The proofs are similar to the proofs above with the modification that we give the key key to the adversary since it has to be able to evaluate the function f_{key} .

Concrete Instantiations

- 1. RSA:
 - Use the seed to pick a function from the family, i.e. pick random *n*-bit primes p, q $(N = pq), e \leftarrow \mathbb{Z}_{\phi(N)}^*, x \stackrel{\text{R}}{\leftarrow} \mathbb{Z}_N^*$
 - Output: lsb(x), $lsb(x^e \mod N)$, $lsb(x^{e^2} \mod N)$, $lsb(x^{e^3} \mod N)$, ...
- 2. Rabin:
 - Use the seed to choose $p \equiv q \equiv 3 \pmod{4}$ (we need one-way permutations) and $x \stackrel{\text{R}}{\leftarrow} \mathbb{Z}_N^*$.
 - Output: $lsb(x^2 \mod N)$, $lsb(x^{2^2} \mod N)$, $lsb(x^{2^3} \mod N)$, ...
 - If the Factoring Assumption holds, the above construction is a pseudorandom generator.
- 3. Modular Exponentiation:
 - Use the seed to generate (p, g, x).
 - Output: $(\operatorname{half}_{p-1}(x), \operatorname{half}_{p-1}(g^x \mod p), \operatorname{half}_{p-1}(g^{g^x \mod p} \mod p), \ldots)$
- 4. All of the above secure if output $O(\log n)$ bits per iteration. Unproven (but conjectured) if output n/2 bits per iteration.