CS 120/CSCI E-177: Introduction to Cryptography
Salil Vadhan and Alon Rosen Oct. 26, 2006
Lecture Notes 11:

Constructing Pseudorandom Generators

Recommended Reading.
e Katz—Lindell §6.4.

We will prove:

Theorem 1 If one-way permutations exist, then pseudorandom generators exist (for any expansion
function £(n) = poly(n)).

The construction consists of two stages:
e One-way permutations + hardcore bit = PRGs that stretch by 1 bit

e PRGs with 1-bit stretch = PRGs with “arbitrary” stretch.

1 Hardcore Bits = PRGs with 1-bit Stretch

Theorem 2 If f is a one-way permutation with hardcore bit b, then G(s) = f(s)b(s) is a pseudo-
random generator.

Proof:

1. Suppose there is a PPT D that distinguishes between G(S) = f(S5)b(S) and U,4+1 = f(S)R
with nonnegligible advantage ¢ (where S <= {0,1}" and R < {0,1}).

2. Then D distinguishes between Yy = f(5)b(S) and Y] = f(5)b(S) with advantage 2e.

3. We can construct a PPT A that predicts C from Yo = £(S) o (b(S) @ C), where C' & {0,1},
with probability at least 1/2 + .

4. B(f(S)) = A(f(S)C") @ C", where C' & {0,1}, predicts b(S) with probability at least 1/2 4.
This contradicts the definition of hardcore bit.
|
2 Increasing the Expansion

First attempt: run G with many independent seeds.

Theorem 3 Let G : {0,1}" — {0,1}"" be a PRG. Then G'(s159---55) = G(51)G(s2) - -+ G(sy) is
a PRG for any ¢ < poly(n).

Proof: “Hybrid technique”. For ¢ =0,..., ¢, define the hybrid H; = R1 Ry -+ RiG(Sit+1) - - - G(Sy),
where R; &40,1}"+! and S; & 40,11, Then Hy = G'(Upp) and Hy = Uppip-
Suppose that G’ is not a PRG: there exists a PPT D such that:

Pr [D(G'(Upm)) = 1] = Pr[D(U) = 1] > ¢

where ¢ is nonnegligible. This inequality can be rewritten using the hybrids H;:

/—

[y

(Pr[D(H;) = 1] = Pr[D(Hiy1) = 1]) > ¢,
=0

7=

so there exists an ¢ such that

Pr [D(Hl) = 1] —Pr [D(Herl) = 1] >

1M

Then the PPT D'(z) = D(R; - RixG(Siy2) - -- G(Sy)) distinguishes G(S;11) = G(U,) from
Rit1 = U,41 with advantage /0. =<« [

Better approach: composition.
Theorem 4 Let G : {0,1}" — {0,1}"! be a PRG. Define Gy(sq) = biby--- by, where s;41bi11 o
G(si) fori=0,...,£ —1. Then, for any { < poly(n), Gy is a PRG with expansion (.

Proof: Intuition: G(sg) = (s1,b1) looks random & independent, so (G(s1),b1) = (s2, b2, b1) looks
random & independent, etc. To formalize this, we will use the hybrid technique. For ¢ = 0,... ¢,
define Hz' = Uz o Ggfl(Un) Then H() = Gg(Un), Hg = Ug.

As above, if Gy is not a PRG, then there exists a PPT D such such that

Pr[D(H;) = 1] — Pr[D(His1) = 1] > %
where ¢ is nonnegligible.
Define the PPT D'(y):

1. Write y = s;4+1bi+1 where |siy1| = n.
2. Choose by, ..., b; & {0,1}.

3. Let biyo---bp=Gp_i—1(Sit1).

4. Run D(by - - by)

If y — G(U,) , then D is fed with by --- by, — H;.
If y < Up41, then D is fed with by ---bp «— H;yq.

Thus,
Pr [D’(G(Un)) — 1] —Pr [D/(Un+1) _ 1] - %

¢ is nonnegligible and £ is a polynomial so 7 is nonnegligible, contradicting the assumption that G

is a pseudorandom generator. |

Generator obtained from above two theorems

If f is a one-way permutation with hardcore bit b, G(x) = b(z)b(f(2)b(f(f(z)))---b(f (x)).

e The bits can be computed on-line, if we remember the current value of s; = f(sq). To output
a new bit, we output b(s;) and update s;11 «— f(s;).

e The construction does not depend on £ : the stretch doesn’t have to be determined in advance.
(Note that the security degrades linearly with the number of bits produced, i.e. the adversary’s
advantage increases)

e This construction also works for collections of one-way permutations.
G(r1,r) = bkey(x)bkey(fkey(x)) T bkey(flfey(x))

where 71 are the coin tosses used to select key < G(1™) and rg are the coin tosses to sample

T & Dyey. The proofs are similar to the proofs above with the modification that we give the
key key to the adversary since it has to be able to evaluate the function fiey.

Concrete Instantiations

1. RSA:

e Use the seed to pick a function from the family, i.e. pick random n-bit primes p,q (N =
pQ)a € <— ZZ)(N)v x & Z}k\/'

e Output: Isb(z), Isb(z¢ mod N),Isb(z¢" mod N),1sb(z*" mod N),...
2. Rabin:

e Use the seed to choose p = ¢ = 3 (mod 4) (we need one-way permutations) and z < Z%;.
e Output: Isb(z2 mod N),lsb(22° mod N),lsb(2%* mod N), ...

e If the Factoring Assumption holds, the above construction is a pseudorandom generator.
3. Modular Exponentiation:

e Use the seed to generate (p, g,).
e Output: (half,_1(x),half,_1(g* mod p), half,_1(g9" ™°¢? mod p), ...

4. All of the above secure if output O(logn) bits per iteration. Unproven (but conjectured) if
output n/2 bits per iteration.

