CS 120/CSCI E-177: Introduction to Cryptography
Salil Vadhan and Alon Rosen
Oct. 26, 2006

Lecture Notes 11:

Constructing Pseudorandom Generators

Recommended Reading.

- Katz-Lindell §6.4.

We will prove:
Theorem 1 If one-way permutations exist, then pseudorandom generators exist (for any expansion function $\ell(n)=\operatorname{poly}(n)$).

The construction consists of two stages:

- One-way permutations + hardcore bit \Rightarrow PRGs that stretch by 1 bit
- PRGs with 1-bit stretch \Rightarrow PRGs with "arbitrary" stretch.

1 Hardcore Bits \Rightarrow PRGs with 1-bit Stretch

Theorem 2 If f is a one-way permutation with hardcore bit b, then $G(s)=f(s) b(s)$ is a pseudorandom generator.

Proof:

1. Suppose there is a PPT D that distinguishes between $G(S)=f(S) b(S)$ and $U_{n+1}=f(S) R$

2. Then D distinguishes between $Y_{0}=f(S) b(S)$ and $Y_{1}=f(S) \overline{b(S)}$ with advantage 2ε.
3. We can construct a PPT A that predicts C from $Y_{C}=f(S) \circ(b(S) \oplus C)$, where $C \stackrel{\mathrm{R}}{\leftarrow}\{0,1\}$, with probability at least $1 / 2+\varepsilon$.
4. $B(f(S))=A\left(f(S) C^{\prime}\right) \oplus C^{\prime}$, where $C^{\prime} \stackrel{\mathrm{R}}{\leftarrow}\{0,1\}$, predicts $b(S)$ with probability at least $1 / 2+\varepsilon$. This contradicts the definition of hardcore bit.

2 Increasing the Expansion

First attempt: run G with many independent seeds.
Theorem 3 Let $G:\{0,1\}^{n} \rightarrow\{0,1\}^{n+1}$ be a $P R G$. Then $G^{\prime}\left(s_{1} s_{2} \cdots s_{\ell}\right)=G\left(s_{1}\right) G\left(s_{2}\right) \cdots G\left(s_{\ell}\right)$ is a $P R G$ for any $\ell \leq \operatorname{poly}(n)$.

Proof: "Hybrid technique". For $i=0, \ldots, \ell$, define the hybrid $H_{i}=R_{1} R_{2} \cdots R_{i} G\left(S_{i+1}\right) \cdots G\left(S_{\ell}\right)$, where $R_{j} \stackrel{\mathrm{R}}{\leftarrow}\{0,1\}^{n+1}$ and $S_{j} \stackrel{\mathrm{R}}{\leftarrow}\{0,1\}^{n}$. Then $H_{0} \equiv G^{\prime}\left(U_{\ell n}\right)$ and $H_{\ell} \equiv U_{\ell n+\ell}$.

Suppose that G^{\prime} is not a PRG: there exists a PPT D such that:

$$
\operatorname{Pr}\left[D\left(G^{\prime}\left(U_{\ell n}\right)\right)=1\right]-\operatorname{Pr}\left[D\left(U_{\ell}\right)=1\right]>\varepsilon
$$

where ε is nonnegligible. This inequality can be rewritten using the hybrids H_{i} :

$$
\sum_{i=0}^{\ell-1}\left(\operatorname{Pr}\left[D\left(H_{i}\right)=1\right]-\operatorname{Pr}\left[D\left(H_{i+1}\right)=1\right]\right)>\varepsilon,
$$

so there exists an i such that

$$
\operatorname{Pr}\left[D\left(H_{i}\right)=1\right]-\operatorname{Pr}\left[D\left(H_{i+1}\right)=1\right]>\frac{\varepsilon}{\ell} .
$$

Then the PPT $D^{\prime}(x)=D\left(R_{1} \cdots R_{i} x G\left(S_{i+2}\right) \cdots G\left(S_{\ell}\right)\right)$ distinguishes $G\left(S_{i+1}\right) \equiv G\left(U_{n}\right)$ from $R_{i+1} \equiv U_{n+1}$ with advantage $\varepsilon / \ell . \Rightarrow \Leftarrow$

Better approach: composition.
Theorem 4 Let $G:\{0,1\}^{n} \rightarrow\{0,1\}^{n+1}$ be a PRG. Define $G_{\ell}\left(s_{0}\right)=b_{1} b_{2} \cdots b_{\ell}$, where $s_{i+1} b_{i+1} \stackrel{\text { def }}{=}$ $G\left(s_{i}\right)$ for $i=0, \ldots, \ell-1$. Then, for any $\ell \leq \operatorname{poly}(n), G_{\ell}$ is a PRG with expansion ℓ.

Proof: Intuition: $G\left(s_{0}\right)=\left(s_{1}, b_{1}\right)$ looks random \& independent, so $\left(G\left(s_{1}\right), b_{1}\right)=\left(s_{2}, b_{2}, b_{1}\right)$ looks random \& independent, etc. To formalize this, we will use the hybrid technique. For $i=0, \ldots, \ell$, define $H_{i}=U_{i} \circ G_{\ell-i}\left(U_{n}\right)$. Then $H_{0}=G_{\ell}\left(U_{n}\right), H_{\ell}=U_{\ell}$.

As above, if G_{ℓ} is not a PRG, then there exists a PPT D such such that

$$
\operatorname{Pr}\left[D\left(H_{i}\right)=1\right]-\operatorname{Pr}\left[D\left(H_{i+1}\right)=1\right]>\frac{\varepsilon}{\ell},
$$

where ε is nonnegligible.
Define the PPT $D^{\prime}(y)$:

1. Write $y=s_{i+1} b_{i+1}$ where $\left|s_{i+1}\right|=n$.
2. Choose $b_{1}, \ldots, b_{i} \stackrel{\mathrm{R}}{\leftarrow}\{0,1\}$.
3. Let $b_{i+2} \cdots b_{\ell}=G_{\ell-i-1}\left(s_{i+1}\right)$.
4. Run $D\left(b_{1} \cdots b_{\ell}\right)$

If $y \leftarrow G\left(U_{n}\right)$, then D is fed with $b_{1} \cdots b_{\ell} \leftarrow H_{i}$.
If $y \leftarrow U_{n+1}$, then D is fed with $b_{1} \cdots b_{\ell} \leftarrow H_{i+1}$.
Thus,

$$
\operatorname{Pr}\left[D^{\prime}\left(G\left(U_{n}\right)\right)=1\right]-\operatorname{Pr}\left[D^{\prime}\left(U_{n+1}\right)=1\right]>\frac{\varepsilon}{\ell}
$$

ε is nonnegligible and ℓ is a polynomial so $\frac{\varepsilon}{\ell}$ is nonnegligible, contradicting the assumption that G is a pseudorandom generator.

Generator obtained from above two theorems

If f is a one-way permutation with hardcore bit $\mathrm{b}, G(x)=b(x) b(f(x)) b(f(f(x))) \cdots b\left(f^{\ell}(x)\right)$.

- The bits can be computed on-line, if we remember the current value of $s_{i}=f^{i}\left(s_{0}\right)$. To output a new bit, we output $b\left(s_{i}\right)$ and update $s_{i+1} \leftarrow f\left(s_{i}\right)$.
- The construction does not depend on ℓ : the stretch doesn't have to be determined in advance. (Note that the security degrades linearly with the number of bits produced, i.e. the adversary's advantage increases)
- This construction also works for collections of one-way permutations.

$$
G\left(r_{1}, r_{2}\right)=b_{\text {key }}(x) b_{\text {key }}\left(f_{\text {key }}(x)\right) \cdots b_{\text {key }}\left(f_{\text {key }}^{\ell}(x)\right)
$$

where r_{1} are the coin tosses used to select key $\stackrel{\mathrm{R}}{\leftarrow} G\left(1^{n}\right)$ and r_{2} are the coin tosses to sample $x \stackrel{\mathrm{R}}{\leftarrow} D_{\text {key }}$. The proofs are similar to the proofs above with the modification that we give the key key to the adversary since it has to be able to evaluate the function $f_{\text {key }}$.

Concrete Instantiations

1. RSA:

- Use the seed to pick a function from the family, i.e. pick random n-bit primes $p, q(N=$ $p q), e \leftarrow \mathbb{Z}_{\phi(N)}^{*}, x \stackrel{\mathbb{R}}{\leftarrow} \mathbb{Z}_{N}^{*}$
- Output: $\operatorname{lsb}(x), \operatorname{lsb}\left(x^{e} \bmod N\right), \operatorname{lsb}\left(x^{e^{2}} \bmod N\right), \operatorname{lsb}\left(x^{e^{3}} \bmod N\right), \ldots$

2. Rabin:

- Use the seed to choose $p \equiv q \equiv 3(\bmod 4)$ (we need one-way permutations) and $x \stackrel{\mathrm{R}}{\leftarrow} \mathbb{Z}_{N}^{*}$.
- Output: $\operatorname{lsb}\left(x^{2} \bmod N\right), \operatorname{lsb}\left(x^{2^{2}} \bmod N\right), \operatorname{lsb}\left(x^{2^{3}} \bmod N\right), \ldots$
- If the Factoring Assumption holds, the above construction is a pseudorandom generator.

3. Modular Exponentiation:

- Use the seed to generate (p, g, x).
- Output: $\left(\operatorname{half}_{p-1}(x), \operatorname{half}_{p-1}\left(g^{x} \bmod p\right), \operatorname{half}_{p-1}\left(g^{g^{x}} \bmod p \bmod p\right), \ldots\right.$.

4. All of the above secure if output $O(\log n)$ bits per iteration. Unproven (but conjectured) if output $n / 2$ bits per iteration.
