
CS 120/CSCI E-177: Introduction to Cryptography

Salil Vadhan and Alon Rosen Oct. 26, 2006

Lecture Notes 11:

Constructing Pseudorandom Generators

Recommended Reading.

• Katz�Lindell �6.4.

We will prove:

Theorem 1 If one-way permutations exist, then pseudorandom generators exist (for any expansion
function `(n) = poly(n)).

The construction consists of two stages:

• One-way permutations + hardcore bit ⇒ PRGs that stretch by 1 bit

• PRGs with 1-bit stretch ⇒ PRGs with �arbitrary� stretch.

1 Hardcore Bits ⇒ PRGs with 1-bit Stretch
Theorem 2 If f is a one-way permutation with hardcore bit b, then G(s) = f(s)b(s) is a pseudo-
random generator.

Proof:

1. Suppose there is a PPT D that distinguishes between G(S) = f(S)b(S) and Un+1 = f(S)R
with nonnegligible advantage ε (where S

R←{0, 1}n and R
R←{0, 1}).

2. Then D distinguishes between Y0 = f(S)b(S) and Y1 = f(S)b(S) with advantage 2ε.

3. We can construct a PPT A that predicts C from YC = f(S) ◦ (b(S)⊕ C), where C
R← {0, 1},

with probability at least 1/2 + ε.

4. B(f(S)) = A(f(S)C ′)⊕C ′, where C ′ R←{0, 1}, predicts b(S) with probability at least 1/2+ ε.
This contradicts the de�nition of hardcore bit.

2 Increasing the Expansion
First attempt: run G with many independent seeds.

Theorem 3 Let G : {0, 1}n → {0, 1}n+1 be a PRG. Then G′(s1s2 · · · s`) = G(s1)G(s2) · · ·G(s`) is
a PRG for any ` ≤ poly(n).

1

Proof: �Hybrid technique�. For i = 0, . . . , `, de�ne the hybrid Hi = R1R2 · · ·RiG(Si+1) · · ·G(S`),
where Rj

R←{0, 1}n+1 and Sj
R←{0, 1}n. Then H0 ≡ G′(U`n) and H` ≡ U`n+`.

Suppose that G′ is not a PRG: there exists a PPT D such that:

Pr
[
D(G′(U`n)) = 1

]− Pr [D(U`) = 1] > ε

where ε is nonnegligible. This inequality can be rewritten using the hybrids Hi:

`−1∑

i=0

(Pr [D(Hi) = 1]− Pr [D(Hi+1) = 1]) > ε,

so there exists an i such that

Pr [D(Hi) = 1]− Pr [D(Hi+1) = 1] >
ε

`
.

Then the PPT D′(x) = D(R1 · · ·RixG(Si+2) · · ·G(S`)) distinguishes G(Si+1) ≡ G(Un) from
Ri+1 ≡ Un+1 with advantage ε/`. ⇒⇐

Better approach: composition.

Theorem 4 Let G : {0, 1}n → {0, 1}n+1 be a PRG. De�ne G`(s0) = b1b2 · · · b`, where si+1bi+1
def=

G(si) for i = 0, . . . , `− 1. Then, for any ` ≤ poly(n), G` is a PRG with expansion `.

Proof: Intuition: G(s0) = (s1, b1) looks random & independent, so (G(s1), b1) = (s2, b2, b1) looks
random & independent, etc. To formalize this, we will use the hybrid technique. For i = 0, . . . , `,
de�ne Hi = Ui ◦G`−i(Un). Then H0 = G`(Un), H` = U`.

As above, if G` is not a PRG, then there exists a PPT D such such that

Pr [D(Hi) = 1]− Pr [D(Hi+1) = 1] >
ε

`
,

where ε is nonnegligible.
De�ne the PPT D′(y):

1. Write y = si+1bi+1 where |si+1| = n.

2. Choose b1, . . . , bi
R←{0, 1}.

3. Let bi+2 · · · b` = G`−i−1(si+1).

4. Run D(b1 · · · b`)

If y ← G(Un) , then D is fed with b1 · · · b` ← Hi.
If y ← Un+1, then D is fed with b1 · · · b` ← Hi+1.

Thus,
Pr

[
D′(G(Un)) = 1

]− Pr
[
D′(Un+1) = 1

]
>

ε

`

ε is nonnegligible and ` is a polynomial so ε
` is nonnegligible, contradicting the assumption that G

is a pseudorandom generator.

2

Generator obtained from above two theorems
If f is a one-way permutation with hardcore bit b, G(x) = b(x)b(f(x))b(f(f(x))) · · · b(f `(x)).

• The bits can be computed on-line, if we remember the current value of si = f i(s0). To output
a new bit, we output b(si) and update si+1 ← f(si).

• The construction does not depend on ` : the stretch doesn't have to be determined in advance.
(Note that the security degrades linearly with the number of bits produced, i.e. the adversary's
advantage increases)

• This construction also works for collections of one-way permutations.

G(r1, r2) = bkey(x)bkey(fkey(x)) · · · bkey(f `
key(x))

where r1 are the coin tosses used to select key
R← G(1n) and r2 are the coin tosses to sample

x
R←Dkey. The proofs are similar to the proofs above with the modi�cation that we give the

key key to the adversary since it has to be able to evaluate the function fkey.

Concrete Instantiations
1. RSA:

• Use the seed to pick a function from the family, i.e. pick random n-bit primes p, q (N =
pq), e ← Z∗φ(N), x

R← Z∗N
• Output: lsb(x), lsb(xe mod N), lsb(xe2

mod N), lsb(xe3
mod N), . . .

2. Rabin:

• Use the seed to choose p ≡ q ≡ 3 (mod 4) (we need one-way permutations) and x
R←Z∗N .

• Output: lsb(x2 mod N), lsb(x22
mod N), lsb(x23

mod N), . . .

• If the Factoring Assumption holds, the above construction is a pseudorandom generator.

3. Modular Exponentiation:

• Use the seed to generate (p, g, x).
• Output: (halfp−1(x), halfp−1(gx mod p), halfp−1(ggx mod p mod p),

4. All of the above secure if output O(log n) bits per iteration. Unproven (but conjectured) if
output n/2 bits per iteration.

3

