CS 120/E-177: Introduction to Cryptography
Salil Vadhan and Alon Rosen
Dec. 4, 2006

Lecture Notes 18:

Collision-Resistant Hashing

- Recommended reading: Katz-Lindell 10.5

1 Definition

Idea: Sign (or MAC) a long message m by first hashing it. What properties will we want from the hash function h ?

- $\|h(x)\| \ll\|x\|$.
- h easy to evaluate.
- Hard to find collisions, i.e. $\left(x, x^{\prime}\right)$ s.t. $x \neq x^{\prime}$ and $h(x)=h\left(x^{\prime}\right)$.

Definition 1 (collision-resistant hash functions) $\mathcal{H}=\left\{h_{i}:\{0,1\}^{\ell_{d}(i)} \rightarrow\{0,1\}^{\ell_{r}(i)}\right\}_{i \in \mathcal{I}}$ is a collection of collision-resistant hash functions if

- (generation) There is a PPT $G\left(1^{n}\right)$ which outputs $i \in \mathcal{I}$.
- (hashing) $\ell_{d}(i)<\ell_{r}(i)$.
- (easy to evaluate) Given x, i, can compute $h_{i}(x)$ in poly-time.
- (hard to form collisions) For every PPT A, there is a negligible function ε such that

$$
\operatorname{Pr}\left[A(I)=\left(X, X^{\prime}\right) \text { s.t. } X \neq X^{\prime} \text { and } h_{I}(X)=h_{I}\left(X^{\prime}\right)\right] \leq \varepsilon(n), \quad \forall n
$$

where the probability is taken over $I \stackrel{R}{\leftarrow} G\left(1^{n}\right)$ and the coin tosses of A.

- (technical condition) $n \leq \operatorname{poly}(|i|)$ for any $i \leftarrow G\left(1^{n}\right)$.

1.1 Comments

- Typically, we want the range to be much smaller than the domain, we can think of $\{0,1\}^{\ell_{d}(i)}=$ $\{0,1\}^{*},\{0,1\}^{\ell_{r}(i)}=\{0,1\}^{n}$.

1.2 Attacks

There are different attacks on collision-resistant hash functions:

- Random guessing: Suppose $\ell_{d}=2 n$. pick m, m^{\prime} randomly from $\{0,1\}^{2 n}$. The probability of success is greater than $\frac{1}{2^{n}}-\frac{1}{2^{2 n}}$.
- Birthday attack: pick random messages to find a collision. We choose t messages randomly from $\{0,1\}^{2 n}$ and the expected number of collisions is:

$$
\begin{aligned}
\mathrm{E}[\# \text { collisions }] & =\# \text { pairs } \cdot \operatorname{Pr}[\text { any one pair collide }] \\
& \geq\binom{ t}{2} \cdot\left(\frac{1}{2^{n}}-\frac{1}{2^{2 n}}\right) \\
& \sim \frac{t^{2}}{2^{n+1}}
\end{aligned}
$$

If we pick $t=\Theta\left(2^{k / 2}\right)$, we expect to find a collision. Quadratic savings over exhaustive search (though still exponential in n).

1.3 Universal One-Way Hash Functions

Note that our definition of collision-resistantness is a strong notion. There exists a weaker notion called universal one-way hash functions, where:

1. A first picks $x \in\{0,1\}^{\ell_{d}(i)}$.
2. $i \stackrel{r}{\leftarrow} G\left(1^{n}\right)$
3. A has to find $x^{\prime} \neq x$ s.t. $h_{i}\left(x^{\prime}\right)=h_{i}(x)$.

Universal one-way hash functions can be constructed from one-way functions.

1.4 Shrinking by more than One Bit

The definition of Collision -Resistant Hash Functions only requires shrinking by one bit. To shrink more may apply "Merkle-Damgård" methodology:

- First design a collision-resistant "compression function" $h:\{0,1\}^{\ell+n} \rightarrow\{0,1\}^{n}$.
- For a message $M \in\{0,1\}^{*}$ (eventually padded appropriately), break into ℓ-bit blocks $M_{1} M_{2} \cdots M_{t}$, where M_{t} contains length of M, and define $H(M)=h\left(M_{t} \circ h\left(M_{t-1} \circ h\left(M_{t-2} \cdots h\left(M_{1} \circ\right.\right.\right.\right.$ IV $\left.\left.)\right)\right)$), where IV is a fixed initial vector (e.g. IV $=0^{n}$).

Proposition 2 If h is collision-resistant, then H is collision-resistant.

2 Constructions

2.1 Number-Theoretic Constructions

Theorem 3 Collections of collision-resistant hash functions exist under either the Factoring Assumption or the Discrete Log Assumption.

Proof Sketch: Construction based on Discrete Log: First construct $h_{p, g, y}: \mathbb{Z}_{p-1} \times\{0,1\} \rightarrow \mathbb{Z}_{p}^{*}$ by $h_{p, g, y}(x, b)=y^{b} \cdot g^{x} \bmod p$. A collision for $h_{p, g, y}$ yields the discrete \log of y.

2.2 Hash Functions in Practice

Typical design features:

- Tailor-designed functions $H:\{0,1\}^{*} \rightarrow\{0,1\}^{n}$, with e.g. $n=128$ or $n=160$. (Note that n is larger than for block ciphers to protect against birthday attacks)
- Very fast.
- Designed to be collision-resistant (in strong sense), have "random looking" output.
- Confusion \& diffusion
- Not related to any nice complexity assumption.
- Not a "collection" - think of "design choices" as generation algorithm.

Some "popular hash-functions:

- MD4 - Message Digest 4
- Designed by Ron Rivest (1990), $n=128, \ell=512$.
- Collisions have been found (1995). Design is basis for stronger hash functions (MD5, SHA-1).
- Follows Merkle-Damgård with compression function $h:\{0,1\}^{512+128} \rightarrow\{0,1\}^{128}$.
- MD5 - improvement to MD4 (Rivest, 1992). Collisions have been found (1998).
- SHA-1 - another improvement to MD4 (NIST w/NSA, 1994)
- hash size $n=160$, so compression function is $h:\{0,1\}^{512+160} \rightarrow\{0,1\}^{160}$.
- Collisions can be found in time 2^{60} (better than "birthday attack") (2005).

3 Hash-then-Sign

We present it for signatures, but it also works for MACs. Let ($G, \mathrm{~S}, V$) be a signature scheme for message space $\{0,1\}^{n}$, and let \mathcal{H} be a collection of hash functions with domain $\{0,1\}^{*}$ and range $\{0,1\}^{n}$. Define a new signature scheme $\left(G^{\prime}, S^{\prime}, V^{\prime}\right)$ for message space $\{0,1\}^{*}$ by setting

- $P K^{\prime}=(P K, i), S K^{\prime}=(S K, i)$.
- $\mathrm{S}_{S K^{\prime}}^{\prime}(m)=\mathrm{S}_{S K}\left(h_{i}(m)\right)$.
- $V_{P K^{\prime}}^{\prime}(m, \sigma)=V_{P K}\left(h_{i}(m), \sigma\right)$.

Theorem 4 If (G, S, V) is a secure one-time signature scheme for message space $\{0,1\}^{n}$ and \mathcal{H} is collision resistant, then $\left(G^{\prime}, \mathrm{S}^{\prime}, V^{\prime}\right)$ is a secure one-time signature scheme for message space $\{0,1\}^{*}$.

Proof: Suppose there is a PPT A which breaks the new signature scheme with probability at least ε. $A\left(P K^{\prime}\right)$ makes one query m, gets back $\sigma \stackrel{\mathrm{R}}{\leftarrow} \mathrm{S}_{S K^{\prime}}^{\prime}(m)$, and outputs ($m^{\prime}, \sigma^{\prime}$). For this to be a successful forgery, $m \neq m^{\prime}$ and $V_{P K^{\prime}}^{\prime}\left(m^{\prime}, \sigma^{\prime}\right)=$ accept. One of the following two cases must hold.

- $h_{i}(m)=h_{i}\left(m^{\prime}\right)$ and $m \neq m^{\prime}$. This means that A has found a collision for h.

A PPT B that breaks h is given i as input:

- generate $(P K, S K)$ for the original signature shceme
- run $A(P K, i)(B$ can answer A 's query because B has $S K)$ to obtain $\left(m^{\prime}, \sigma^{\prime}\right)$.
- B outputs (m, m^{\prime})
- $h_{i}(m) \neq h_{i}\left(m^{\prime}\right)$ and $V_{P K}\left(h_{i}\left(m^{\prime}\right), \sigma^{\prime}\right)=$ accept. This means that A has forged in the original signature scheme.

A PPT C that breaks the original signature scheme is given $P K$ as input:

- B picks i at random and runs $A(P K, i)$. Note that B can ask for one query in the original scheme so B will ask for the signature of $h_{i}(m)$, where m is A 's query.
- A produces a forgery $\left(m^{\prime}, \sigma^{\prime}\right)$
- B outputs the forgery $\left(h_{i}\left(m^{\prime}\right), \sigma^{\prime}\right)$.

Each of the above happens with only negligible probability, by reducibility arguments.
Hash-then-sign also works for general (i.e. many-time) signatures and MACs.

