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Lecture Notes 18:

Collision-Resistant Hashing

• Recommended reading: Katz-Lindell 10.5

1 De�nition

Idea: Sign (or MAC) a long message m by �rst hashing it. What properties will we want from the
hash function h?

• ||h(x)|| � ||x||.

• h easy to evaluate.

• Hard to �nd collisions, i.e. (x, x′) s.t. x 6= x′ and h(x) = h(x′).

De�nition 1 (collision-resistant hash functions) H = {hi : {0, 1}`d(i) → {0, 1}`r(i)}i∈I is a

collection of collision-resistant hash functions if

• (generation) There is a PPT G(1n) which outputs i ∈ I.

• (hashing) `d(i) < `r(i).

• (easy to evaluate) Given x, i, can compute hi(x) in poly-time.

• (hard to form collisions) For every PPT A, there is a negligible function ε such that

Pr [A(I) = (X, X ′) s.t. X 6= X ′ and hI(X) = hI(X ′)] ≤ ε(n), ∀n

where the probability is taken over I
R←G(1n) and the coin tosses of A.

• (technical condition) n ≤ poly(|i|) for any i← G(1n).

1.1 Comments

• Typically, we want the range to be much smaller than the domain, we can think of {0, 1}`d(i) =
{0, 1}∗, {0, 1}`r(i) = {0, 1}n.

1.2 Attacks

There are di�erent attacks on collision-resistant hash functions:

• Random guessing: Suppose `d = 2n. pick m,m′ randomly from {0, 1}2n. The probability of
success is greater than 1

2n − 1
22n .
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• Birthday attack: pick random messages to �nd a collision. We choose t messages randomly
from {0, 1}2n and the expected number of collisions is:

E[# collisions] = # pairs · Pr [any one pair collide]

≥
(

t

2

)
·
(

1
2n
− 1

22n

)
∼ t2

2n+1

If we pick t = Θ(2k/2), we expect to �nd a collision. Quadratic savings over exhaustive search
(though still exponential in n).

1.3 Universal One-Way Hash Functions

Note that our de�nition of collision-resistantness is a strong notion. There exists a weaker notion
called universal one-way hash functions, where:

1. A �rst picks x ∈ {0, 1}`d(i).

2. i
r← G(1n)

3. A has to �nd x′ 6= x s.t. hi(x′) = hi(x).

Universal one-way hash functions can be constructed from one-way functions.

1.4 Shrinking by more than One Bit

The de�nition of Collision -Resistant Hash Functions only requires shrinking by one bit. To shrink
more may apply �Merkle�Damgård� methodology:

• First design a collision-resistant �compression function� h : {0, 1}`+n → {0, 1}n.

• For a messageM ∈ {0, 1}∗ (eventually padded appropriately), break into `-bit blocksM1M2 · · ·Mt,
where Mt contains length of M , and de�ne H(M) = h(Mt◦h(Mt−1◦h(Mt−2 · · ·h(M1◦IV)))),
where IV is a �xed initial vector (e.g. IV = 0n).

Proposition 2 If h is collision-resistant, then H is collision-resistant.

2 Constructions

2.1 Number-Theoretic Constructions

Theorem 3 Collections of collision-resistant hash functions exist under either the Factoring As-

sumption or the Discrete Log Assumption.

Proof Sketch: Construction based on Discrete Log: First construct hp,g,y : Zp−1 × {0, 1} → Z∗
p

by hp,g,y(x, b) = yb · gx mod p. A collision for hp,g,y yields the discrete log of y. �
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2.2 Hash Functions in Practice

Typical design features:

• Tailor-designed functions H : {0, 1}∗ → {0, 1}n, with e.g. n = 128 or n = 160. (Note that n
is larger than for block ciphers to protect against birthday attacks)

• Very fast.

• Designed to be collision-resistant (in strong sense), have �random looking� output.

• Confusion & di�usion

• Not related to any nice complexity assumption.

• Not a �collection� � think of �design choices� as generation algorithm.

Some "popular hash-functions:

• MD4 � Message Digest 4

� Designed by Ron Rivest (1990), n = 128, ` = 512.

� Collisions have been found (1995). Design is basis for stronger hash functions (MD5,
SHA-1).

� Follows Merkle�Damgård with compression function h : {0, 1}512+128 → {0, 1}128.

• MD5 � improvement to MD4 (Rivest, 1992). Collisions have been found (1998).

• SHA-1 � another improvement to MD4 (NIST w/NSA, 1994)

� hash size n = 160, so compression function is h : {0, 1}512+160 → {0, 1}160.
� Collisions can be found in time 260 (better than "birthday attack") (2005).

3 Hash-then-Sign

We present it for signatures, but it also works for MACs. Let (G, S, V ) be a signature scheme for
message space {0, 1}n, and let H be a collection of hash functions with domain {0, 1}∗ and range
{0, 1}n. De�ne a new signature scheme (G′,S′, V ′) for message space {0, 1}∗ by setting

• PK ′ = (PK , i), SK ′ = (SK , i).

• S′
SK ′(m) = SSK (hi(m)).

• V ′
PK ′(m,σ) = VPK (hi(m), σ).

Theorem 4 If (G, S, V ) is a secure one-time signature scheme for message space {0, 1}n and H is

collision resistant, then (G′,S′, V ′) is a secure one-time signature scheme for message space {0, 1}∗.

Proof: Suppose there is a PPT A which breaks the new signature scheme with probability at
least ε. A(PK ′) makes one query m, gets back σ

R← S′
SK ′(m), and outputs (m′, σ′). For this to be a

successful forgery, m 6= m′ and V ′
PK ′(m′, σ′) = accept. One of the following two cases must hold.

• hi(m) = hi(m′) and m 6= m′. This means that A has found a collision for h.

A PPT B that breaks h is given i as input:
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� generate (PK ,SK ) for the original signature shceme

� run A(PK , i) (B can answer A's query because B has SK ) to obtain (m′, σ′).

� B outputs (m,m′)

• hi(m) 6= hi(m′) and VPK (hi(m′), σ′) = accept. This means that A has forged in the original
signature scheme.

A PPT C that breaks the original signature scheme is given PK as input:

� B picks i at random and runs A(PK , i). Note that B can ask for one query in the original
scheme so B will ask for the signature of hi(m), where m is A's query.

� A produces a forgery (m′, σ′)

� B outputs the forgery (hi(m′), σ′).

Each of the above happens with only negligible probability, by reducibility arguments.

Hash-then-sign also works for general (i.e. many-time) signatures and MACs.
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