CS 120/ E-177: Introduction to Cryptography

Salil Vadhan and Alon Rosen

Dec. 4, 2006

Lecture Notes 18:

Collision-Resistant Hashing

• Recommended reading: Katz-Lindell 10.5

1 Definition

Idea: Sign (or MAC) a long message m by first hashing it. What properties will we want from the hash function h?

- $||h(x)|| \ll ||x||.$
- h easy to evaluate.
- Hard to find collisions, i.e. (x, x') s.t. $x \neq x'$ and h(x) = h(x').

Definition 1 (collision-resistant hash functions) $\mathcal{H} = \{h_i : \{0,1\}^{\ell_d(i)} \to \{0,1\}^{\ell_r(i)}\}_{i \in \mathcal{I}}$ is a collection of collision-resistant hash functions if

- (generation) There is a PPT $G(1^n)$ which outputs $i \in \mathcal{I}$.
- (hashing) $\ell_d(i) < \ell_r(i)$.
- (easy to evaluate) Given x, i, can compute $h_i(x)$ in poly-time.
- (hard to form collisions) For every PPT A, there is a negligible function ε such that

$$\Pr\left[A(I) = (X, X') \text{ s.t. } X \neq X' \text{ and } h_I(X) = h_I(X')\right] \le \varepsilon(n), \qquad \forall n$$

where the probability is taken over $I \stackrel{\scriptscriptstyle R}{\leftarrow} G(1^n)$ and the coin tosses of A.

• (technical condition) $n \leq poly(|i|)$ for any $i \leftarrow G(1^n)$.

1.1 Comments

• Typically, we want the range to be much smaller than the domain, we can think of $\{0,1\}^{\ell_d(i)} = \{0,1\}^*, \{0,1\}^{\ell_r(i)} = \{0,1\}^n$.

1.2 Attacks

There are different attacks on collision-resistant hash functions:

• Random guessing: Suppose $\ell_d = 2n$. pick m, m' randomly from $\{0, 1\}^{2n}$. The probability of success is greater than $\frac{1}{2^n} - \frac{1}{2^{2n}}$.

• Birthday attack: pick random messages to find a collision. We choose t messages randomly from $\{0, 1\}^{2n}$ and the expected number of collisions is:

$$\begin{split} \mathbf{E}[\# \text{ collisions}] &= \# \text{ pairs} \cdot \Pr[\text{any one pair collide}] \\ &\geq \begin{pmatrix} t \\ 2 \end{pmatrix} \cdot \left(\frac{1}{2^n} - \frac{1}{2^{2n}}\right) \\ &\sim \frac{t^2}{2^{n+1}} \end{split}$$

If we pick $t = \Theta(2^{k/2})$, we expect to find a collision. Quadratic savings over exhaustive search (though still exponential in n).

1.3 Universal One-Way Hash Functions

Note that our definition of collision-resistantness is a strong notion. There exists a weaker notion called *universal one-way hash functions*, where:

- 1. A first picks $x \in \{0, 1\}^{\ell_d(i)}$.
- 2. $i \stackrel{r}{\leftarrow} G(1^n)$
- 3. A has to find $x' \neq x$ s.t. $h_i(x') = h_i(x)$.

Universal one-way hash functions can be constructed from one-way functions.

1.4 Shrinking by more than One Bit

The definition of Collision -Resistant Hash Functions only requires shrinking by one bit. To shrink more may apply "Merkle–Damgård" methodology:

- First design a collision-resistant "compression function" $h: \{0,1\}^{\ell+n} \to \{0,1\}^n$.
- For a message $M \in \{0, 1\}^*$ (eventually padded appropriately), break into ℓ -bit blocks $M_1 M_2 \cdots M_t$, where M_t contains length of M, and define $H(M) = h(M_t \circ h(M_{t-1} \circ h(M_{t-2} \cdots h(M_1 \circ IV))))$, where IV is a fixed initial vector (e.g. $IV = 0^n$).

Proposition 2 If h is collision-resistant, then H is collision-resistant.

2 Constructions

2.1 Number-Theoretic Constructions

Theorem 3 Collections of collision-resistant hash functions exist under either the Factoring Assumption or the Discrete Log Assumption.

Proof Sketch: Construction based on Discrete Log: First construct $h_{p,g,y} : \mathbb{Z}_{p-1} \times \{0,1\} \to \mathbb{Z}_p^*$ by $h_{p,g,y}(x,b) = y^b \cdot g^x \mod p$. A collision for $h_{p,g,y}$ yields the discrete log of y.

2.2 Hash Functions in Practice

Typical design features:

- Tailor-designed functions $H: \{0,1\}^* \to \{0,1\}^n$, with e.g. n = 128 or n = 160. (Note that n is larger than for block ciphers to protect against birthday attacks)
- Very fast.
- Designed to be collision-resistant (in strong sense), have "random looking" output.
- Confusion & diffusion
- Not related to any nice complexity assumption.
- Not a "collection" think of "design choices" as generation algorithm.

Some "popular hash-functions:

- MD4 Message Digest 4
 - Designed by Ron Rivest (1990), $n = 128, \ell = 512$.
 - Collisions have been found (1995). Design is basis for stronger hash functions (MD5, SHA-1).
 - Follows Merkle-Damgård with compression function $h: \{0,1\}^{512+128} \rightarrow \{0,1\}^{128}$.
- MD5 improvement to MD4 (Rivest, 1992). Collisions have been found (1998).
- SHA-1 another improvement to MD4 (NIST w/NSA, 1994)
 - hash size n = 160, so compression function is $h: \{0, 1\}^{512+160} \to \{0, 1\}^{160}$.
 - Collisions can be found in time 2^{60} (better than "birthday attack") (2005).

3 Hash-then-Sign

We present it for signatures, but it also works for MACs. Let (G, S, V) be a signature scheme for message space $\{0, 1\}^n$, and let \mathcal{H} be a collection of hash functions with domain $\{0, 1\}^*$ and range $\{0, 1\}^n$. Define a new signature scheme (G', S', V') for message space $\{0, 1\}^*$ by setting

- PK' = (PK, i), SK' = (SK, i).
- $S'_{SK'}(m) = S_{SK}(h_i(m)).$
- $V'_{PK'}(m,\sigma) = V_{PK}(h_i(m),\sigma).$

Theorem 4 If (G, S, V) is a secure one-time signature scheme for message space $\{0, 1\}^n$ and \mathcal{H} is collision resistant, then (G', S', V') is a secure one-time signature scheme for message space $\{0, 1\}^n$.

Proof: Suppose there is a PPT A which breaks the new signature scheme with probability at least ε . A(PK') makes one query m, gets back $\sigma \stackrel{\mathbb{R}}{\leftarrow} S'_{SK'}(m)$, and outputs (m', σ') . For this to be a successful forgery, $m \neq m'$ and $V'_{PK'}(m', \sigma') = \texttt{accept}$. One of the following two cases must hold.

h_i(m) = h_i(m') and m ≠ m'. This means that A has found a collision for h.
A PPT B that breaks h is given i as input:

- generate (PK, SK) for the original signature shceme
- run A(PK, i) (B can answer A's query because B has SK) to obtain (m', σ') .
- -B outputs (m, m')
- $h_i(m) \neq h_i(m')$ and $V_{PK}(h_i(m'), \sigma') = \texttt{accept}$. This means that A has forged in the original signature scheme.

A PPT C that breaks the original signature scheme is given PK as input:

- B picks *i* at random and runs A(PK, i). Note that *B* can ask for one query in the original scheme so *B* will ask for the signature of $h_i(m)$, where *m* is *A*'s query.
- A produces a forgery (m', σ')
- B outputs the forgery $(h_i(m'), \sigma')$.

Each of the above happens with only negligible probability, by reducibility arguments.

Hash-then-sign also works for general (i.e. many-time) signatures and MACs.