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Lecture Notes 18:

Collision-Resistant Hashing

e Recommended reading: Katz-Lindell 10.5

1 Definition

Idea: Sign (or MAC) a long message m by first hashing it. What properties will we want from the
hash function h?

o [[A(x)]| < lzl]
e h easy to evaluate.
e Hard to find collisions, i.e. (z,2') s.t.  # 2/ and h(z) = h(z').

Definition 1 (collision-resistant hash functions) H = {h; : {0,1}%®) — {0,1}%®};c1 is a
collection of collision-resistant hash functions if

e (generation) There is a PPT G(1™) which outputs i € T.
e (hashing) £4(i) < £,(i).
e (casy to evaluate) Given x, i, can compute h;(x) in poly-time.
e (hard to form collisions) For every PPT A, there is a negligible function € such that
PriA(I) = (X, X') s.t. X # X' and hy(X) = hy(X)] <e(n),  Vn
where the probability is taken over I & G(1™) and the coin tosses of A.

e (technical condition) n < poly(|i|) for any i — G(1").

1.1 Comments
e Typically, we want the range to be much smaller than the domain, we can think of {0, 1}&1(@') =
{0,1}*, {0,1}%® = {0,1}".
1.2 Attacks

There are different attacks on collision-resistant hash functions:

e Random guessing: Suppose £g = 2n. pick m,m’ randomly from {0, 1}2". The probability of

success is greater than 2% — 22%



e Birthday attack: pick random messages to find a collision. We choose ¢ messages randomly
from {0,1}?" and the expected number of collisions is:

E[# collisions] = # pairs - Pr[any one pair collide]
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If we pick t = 6)(2’“/2), we expect to find a collision. Quadratic savings over exhaustive search
(though still exponential in n).

1.3 Universal One-Way Hash Functions

Note that our definition of collision-resistantness is a strong notion. There exists a weaker notion
called universal one-way hash functions, where:

1. A first picks x € {0, 1}%®),
2. i & G
3. A has to find 2’ # x s.t. hi(z') = hi(x).

Universal one-way hash functions can be constructed from one-way functions.

1.4 Shrinking by more than One Bit

The definition of Collision -Resistant Hash Functions only requires shrinking by one bit. To shrink
more may apply “Merkle-Damgard” methodology:

e First design a collision-resistant “compression function” h : {0,1}¥*" — {0, 1}

e For amessage M € {0,1}* (eventually padded appropriately), break into ¢-bit blocks M Ms - - - My,
where M; contains length of M, and define H(M) = h(Myoh(M;_1oh(M;_g---h(M;0IV)))),
where IV is a fixed initial vector (e.g. IV = 0").

Proposition 2 If h is collision-resistant, then H is collision-resistant.

2 Constructions

2.1 Number-Theoretic Constructions

Theorem 3 Collections of collision-resistant hash functions exist under either the Factoring As-
sumption or the Discrete Log Assumption.

Proof Sketch: Construction based on Discrete Log: First construct hy gy : Zp-1 % {0,1} — Zj
by hpgy(z,b) =y”- g% mod p. A collision for h,, 4, yields the discrete log of y. O



2.2 Hash Functions in Practice
Typical design features:

e Tailor-designed functions H : {0,1}* — {0,1}", with e.g. n = 128 or n = 160. (Note that n
is larger than for block ciphers to protect against birthday attacks)

Very fast.

Designed to be collision-resistant (in strong sense), have “random looking” output.

Confusion & diffusion

Not related to any nice complexity assumption.

e Not a “collection” — think of “design choices” as generation algorithm.
Some "popular hash-functions:

e MD4 — Message Digest 4

— Designed by Ron Rivest (1990), n = 128, ¢ = 512.

— Collisions have been found (1995). Design is basis for stronger hash functions (MDS5,
SHA-1).
— Follows Merkle-Damgérd with compression function & : {0, 1}512F128 —, {0 1}128,

e MD5 — improvement to MD4 (Rivest, 1992). Collisions have been found (1998).
e SHA-1 — another improvement to MD4 (NIST w/NSA, 1994)

— hash size n = 160, so compression function is 4 : {0, 1}512+160 —, 0, 1}160,

— Collisions can be found in time 250 (better than "birthday attack") (2005).

3 Hash-then-Sign

We present it for signatures, but it also works for MACs. Let (G,S,V) be a signature scheme for
message space {0,1}", and let H be a collection of hash functions with domain {0,1}* and range
{0,1}™. Define a new signature scheme (G',S’, V') for message space {0, 1}* by setting

e PK' = (PK,i), SK' = (SK,i).
o S'ypr(m) = Ssk (hi(m)).
o Vipi(m,o) = Vpg(hi(m),o).

Theorem 4 If (G,S,V) is a secure one-time signature scheme for message space {0,1}" and H is
collision resistant, then (G',S', V") is a secure one-time signature scheme for message space {0,1}*.

Proof:  Suppose there is a PPT A which breaks the new signature scheme with probability at
least . A(PK') makes one query m, gets back o < S'ir(m), and outputs (m’, o”). For this to be a
successful forgery, m # m’ and V},,..(m', 0’) = accept. One of the following two cases must hold.

e hi(m) = h;(m’) and m # m/. This means that A has found a collision for h.
A PPT B that breaks h is given ¢ as input:



— generate (PK, SK) for the original signature shceme
— run A(PK,i) (B can answer A’s query because B has SK) to obtain (m/, o).
— B outputs (m,m’)
o hi(m) # h;(m’) and Vpg (h;(m’),0’) = accept. This means that A has forged in the original
signature scheme.
A PPT C that breaks the original signature scheme is given PK as input:
— B picks ¢ at random and runs A(PK, 7). Note that B can ask for one query in the original
scheme so B will ask for the signature of h;(m), where m is A’s query.
— A produces a forgery (m/,o’)

— B outputs the forgery (h;(m'),o’).

Each of the above happens with only negligible probability, by reducibility arguments. |

Hash-then-sign also works for general (i.e. many-time) signatures and MACs.



