CS 120/CSCI E-177: Introduction to Cryptography	
Salil Vadhan and Alon Rosen	
	Lecture Notes 2:
	Review of Probability

Recommended Reading.

- Cormen, Leiserson, Rivest, Stein. Introduction to Algorithms (2nd ed), Appendix C \& Ch. 5.
- Goldreich, §1.2.

1 Review of Probability

1.1 Probability spaces

A probability space is a finite or countable set S together with a function $\operatorname{Pr}: S \rightarrow[0,1]$ such that $\sum_{x \in S} \operatorname{Pr}[x]=1$. In this course, the probability space will not always be specified explicitly. Consider the following example:

- Alice flips 100 fair coins $A \in\{0,1\}^{100}$.
- Bob flips 100 fair coins $B \in\{0,1\}^{100}$.
- Carol chooses with probability $3 / 4$ Alice's coin tosses $(C=A)$, with probability $1 / 4$ Bob's coin tosses $(C=B)$.
- Eve gets $E=A \oplus B$ (bitwise XOR).

Here, the underlying probability space is $S=\{0,1\}^{100} \times\{0,1\}^{100} \times\{a, b\}$. For any triplet (x, y, z),

$$
\operatorname{Pr}[(x, y, z)]=
$$

The source of the randomness is all the coin tosses of the involved parties or the random choices made.

An event is a subset of the probability space. The probability of an event T is defined to be $\operatorname{Pr}[T] \stackrel{\text { def }}{=} \sum_{x \in T} \operatorname{Pr}[x]$, but often can be computed more directly.

Example:

1.2 Random variables

Random variables are functions, not necessarily real-valued, on the probability space. In our example, we can consider the following random variables:

- A, Alice's coin tosses (which is just the first coordinate for an element of the probability space)
- Z_{A}, the number of zeroes obtained by Alice
- $Z_{A}+Z_{B}$, the number of zeroes obtained by Alice and Bob together

The random variables X and Y are said to be independent if :

$$
\forall x, y, \operatorname{Pr}[X=x \& Y=y]=\operatorname{Pr}[X=x] \cdot \operatorname{Pr}[Y=y]
$$

Examples:

Random variables X_{1}, \ldots, X_{k} are independent if

$$
\forall x_{1}, \ldots, x_{k}, \operatorname{Pr}\left[X_{1}=x_{1} \& X_{2}=x_{2} \& \cdots \& X_{k}=x_{k}\right]=\operatorname{Pr}\left[X_{1}=x_{1}\right] \cdot \operatorname{Pr}\left[X_{2}=x_{2}\right] \cdots \operatorname{Pr}\left[X_{k}=x_{k}\right]
$$

Not the same as pairwise independence!
Example:

1.3 Expectation of a random variable

The expectation of a real-valued random variable X is defined as: $\mathrm{E}[X]=\sum_{x} \operatorname{Pr}[X=x] \cdot x$. We have the property of linearity:

$$
\begin{gathered}
\mathrm{E}[X+Y]=\mathrm{E}[X]+\mathrm{E}[Y] \\
\mathrm{E}[c X]=c \cdot \mathrm{E}[X] \text { for any constant } \mathrm{c}
\end{gathered}
$$

Note that $\mathrm{E}[X Y]=\mathrm{E}[X] \cdot \mathrm{E}[Y]$ if X and Y are independent, but not in general.
Examples:

- $\mathrm{E}\left[Z_{A}\right]$
- $\mathrm{E}\left[Z_{A}^{2}\right]$

1.4 Markov's inequality

If X is a non-negative real-valued random variable, we have:

$$
\operatorname{Pr}[X \geq t] \leq \frac{\mathrm{E}[X]}{t}
$$

If X has a small expectation, we have a bound on how often the random variable can get large.
Example:

1.5 Chernoff Bound

This is a form of the Law of Large Numbers, which says that the average of random variables over many independent trials will be close to the expectation (with high probability).

Let X_{1}, \ldots, X_{n} be independent $[0,1]$-valued random variables, with $\operatorname{Pr}\left[X_{i}=1\right]=\mu$ for all i. The Chernoff Bound states that

$$
\operatorname{Pr}\left[\frac{1}{n} \sum_{i=1}^{n} X_{i}>\mu+\varepsilon\right] \leq e^{-2 \varepsilon^{2} n}
$$

and

$$
\operatorname{Pr}\left[\frac{1}{n} \sum_{i=1}^{n} X_{i}<\mu-\varepsilon\right] \leq e^{-2 \varepsilon^{2} n} .
$$

Example:

1.6 Conditioning

Let E and F be events. We define the probability of E occurring given that F occurs as:

$$
\operatorname{Pr}[E \mid F]=\frac{\operatorname{Pr}[E \cap F]}{\operatorname{Pr}[F]}
$$

Bayes' Law states that:

$$
\operatorname{Pr}[E \mid F]=\frac{\operatorname{Pr}[F \mid E] \cdot \operatorname{Pr}[E]}{\operatorname{Pr}[F]}
$$

Example:

