Lecture Notes 20:

Zero-Knowledge Proofs

Recommended Reading.

- Vadhan, Interactive ξ^{3} Zero-Knowledge Proofs, from IAS/PCMI Summer School on Computational Complexity, Secs 1.1, 1.2, 2.1, 2.2.
- Goldreich, Chapter 4 (up to 4.4)

1 Interactive Proofs

Motivation: transforming protocols secure against honest-but-curious adversaries into ones secure against malicious adversaries.

- Have parties 'prove' that they are following the protocol.
- How can this be done without leaking information (e.g. their input)?

1.1 "Classical" Proofs

Definition 1 An NP proof system for membership in a language L is an algorithm V such that

1. (Completeness) If $x \in L$, then there exists proof s.t. $V(x$, proof $)=$ accept.
2. (Soundness) If $x \notin L$, then for all proof*, $V(x$, proof* $)=$ reject.
3. (Efficiency) $V(x$, proof) runs in time poly $(\|x\|)$.

- NP proofs inherently provide more knowledge than $x \in L$.

1.2 Interactive Proofs

- Two new ingredients: interaction and randomization. Instead of having the proof be a "static" object, we have a dynamic prover who interacts with the verifier. The verifier V is probabilistic and is allowed to make a small error probability.
- Interactive (2-party) protocol: A pair of algorithms (A, B) taking input, history, and coin tosses to next message, e.g. $m_{1}=A\left(x ; r_{A}\right), m_{2}=B\left(x, m_{1} ; r_{B}\right), m_{3}=A\left(x, m_{1}, m_{2} ; r_{A}\right), \ldots$

Definition $2 A n$ interactive proof for a language L is an interactive protocol (P, V) such that

1. (Completeness) If $x \in L$, then V accepts in $(P, V)(x)$ with probability at least $2 / 3$.
2. (Soundness) If $x \notin L$, then for all P^{*}, V accepts in $\left(P^{*}, V\right)(x)$ with probability at most $1 / 3$.
3. (Efficiency) The total computation time of V and total communication in $(P, V)(x)$ is at most poly $(\|x\|)$.

- Efficiency of honest prover P
- Complexity theory: allow P to be computationally unbounded, and study the power of interactive proofs (IP) as compared to classical proofs (NP).
- Cryptography: restrict to $L \in \mathbf{N P}$, require P to be polynomial time given an NP proof, and hope for additional properties not possible with NP proofs (namely, zero knowledge)
- Error probabilities can be made exponentially small by repetition as usual.

1.3 Quadratic Residuosity

- $L=\{(N, x): x \in \operatorname{QR}(N)\}$.
- How can we prove that $x \in \mathrm{QR}(N)$ without revealing a square root of x ?
- Idea: cut and choose
$-x \in \operatorname{QR}(N) \Leftrightarrow \exists y y \in \operatorname{QR}(N) \wedge x y \in \operatorname{QR}(N)$
- Prover 'cuts' by choosing random y, verifier 'chooses' which of the two statements should be proven.

Proof system for Quadratic Residuosity, on common input (N, x):

1. P: Let q be such that $x=q^{2} \bmod N$.
2. P : Choose $r \stackrel{\mathbb{R}}{\leftarrow} \mathbb{Z}_{N}^{*}$.

Send $y=r^{2} \bmod N$.
3. V : Choose and send $b \stackrel{\mathrm{R}}{\leftarrow}\{0,1\}$.
4. P : If $b=0$, let $s=r$.

If $b=1$, let $s=q r \bmod N$.
Send s to V.
5. V : If $b=0$, accept if $s^{2} \equiv y(\bmod N)$.

If $b=1$, accept if $s^{2} \equiv x y(\bmod N)$.
Proposition 3 Above is an interactive proof for Quadratic Residuosity.
Proof:

2 Zero-Knowledge Proofs

- Intuitively, verifier "learns nothing" in QR protocol: all verifier sees is s, a random string in \mathbb{Z}_{n}^{*} and either $y=s^{2}$ or $y=s^{2} / x$.
- Simulation paradigm: verifier learns nothing if it can generate everything it sees on its own, without interacting with prover.

Definition $4(P, V)$ is zero knowledge if for every PPT V^{*}, there is a PPT S such that $S(x)$ is computationally indistinguishable from $\operatorname{View}_{V_{*}^{*}}^{\left(P, V^{*}\right)}(x)$ when $x \in L$.

That is, for every PPT D, there is a negligible function ε such that for all $x \in L$,

$$
\left|\operatorname{Pr}\left[D\left(\operatorname{View}_{V^{*}}^{\left(P, V^{*}\right)}(x)\right)=1\right]-\operatorname{Pr}[D(S(x))=1]\right| \leq \varepsilon(\|x\|) .
$$

Theorem 5 Above proof system for Quadratic Residuosity is (perfect) zero knowledge.
Proof: $\quad S(N, x)$:

1. Choose $s \stackrel{\mathrm{R}}{\leftarrow} \mathbb{Z}_{N}^{*}$.
2. Choose $b \stackrel{\mathrm{R}}{\leftarrow}\{0,1\}$.
3. If $b=0$, let $y=s^{2} \bmod N$. If $b=1$, let $y=s^{2} \cdot x^{-1} \bmod N$.
4. If $V^{*}((N, x), y) \neq b$, try again (goto Step 1$)$.

5 . Else output (y, b, s).

Technical comment: in the definition of zero knowledge, we should also account for additional information about x possessed by the verifier (e.g. from a prior execution of the zero-knowledge proof or from a higher-level protocol in which the zero-knowledge proof is being used). This is done by giving an auxiliary input z to both V^{*} and S, and quantifying over all $x \in L$ and all z.

