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Lecture Notes 20:

Zero-Knowledge Proofs

Recommended Reading.

• Vadhan, Interactive & Zero-Knowledge Proofs, from IAS/PCMI Summer School on Compu-
tational Complexity, Secs 1.1, 1.2, 2.1, 2.2.

• Goldreich, Chapter 4 (up to 4.4)

1 Interactive Proofs
Motivation: transforming protocols secure against honest-but-curious adversaries into ones secure
against malicious adversaries.

• Have parties `prove' that they are following the protocol.

• How can this be done without leaking information (e.g. their input)?

1.1 �Classical� Proofs
De�nition 1 An NP proof system for membership in a language L is an algorithm V such that

1. (Completeness) If x ∈ L, then there exists proof s.t. V (x, proof ) = accept.

2. (Soundness) If x /∈ L, then for all proof ∗, V (x, proof ∗) = reject.

3. (E�ciency) V (x, proof ) runs in time poly(‖x‖).

• NP proofs inherently provide more knowledge than x ∈ L.

1.2 Interactive Proofs
• Two new ingredients: interaction and randomization. Instead of having the proof be a �static�

object, we have a dynamic prover who interacts with the veri�er. The veri�er V is probabilistic
and is allowed to make a small error probability.

• Interactive (2-party) protocol: A pair of algorithms (A,B) taking input, history, and coin
tosses to next message, e.g. m1 = A(x; rA), m2 = B(x,m1; rB), m3 = A(x,m1,m2; rA), . . .

De�nition 2 An interactive proof for a language L is an interactive protocol (P, V ) such that

1. (Completeness) If x ∈ L, then V accepts in (P, V )(x) with probability at least 2/3.

2. (Soundness) If x /∈ L, then for all P ∗, V accepts in (P ∗, V )(x) with probability at most 1/3.
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3. (E�ciency) The total computation time of V and total communication in (P, V )(x) is at most
poly(‖x‖).

• E�ciency of honest prover P

� Complexity theory: allow P to be computationally unbounded, and study the power of
interactive proofs (IP) as compared to classical proofs (NP).

� Cryptography: restrict to L ∈ NP, require P to be polynomial time given an NP proof,
and hope for additional properties not possible with NP proofs (namely, zero knowledge)

• Error probabilities can be made exponentially small by repetition as usual.

1.3 Quadratic Residuosity
• L = {(N, x) : x ∈ QR(N)}.
• How can we prove that x ∈ QR(N) without revealing a square root of x?

• Idea: cut and choose

� x ∈ QR(N) ⇔ ∃y y ∈ QR(N) ∧ xy ∈ QR(N)

� Prover `cuts' by choosing random y, veri�er `chooses' which of the two statements should
be proven.

Proof system for Quadratic Residuosity, on common input (N, x):

1. P : Let q be such that x = q2 mod N .

2. P : Choose r
R← Z∗N .

Send y = r2 mod N .

3. V : Choose and send b
R←{0, 1}.

4. P : If b = 0, let s = r.
If b = 1, let s = qr mod N .
Send s to V .

5. V : If b = 0, accept if s2 ≡ y (mod N).
If b = 1, accept if s2 ≡ xy (mod N).

Proposition 3 Above is an interactive proof for Quadratic Residuosity.

Proof:
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2 Zero-Knowledge Proofs
• Intuitively, veri�er �learns nothing� in QR protocol: all veri�er sees is s, a random string in
Z∗n and either y = s2 or y = s2/x.

• Simulation paradigm: veri�er learns nothing if it can generate everything it sees on its own,
without interacting with prover.

De�nition 4 (P, V ) is zero knowledge if for every PPT V ∗, there is a PPT S such that S(x) is
computationally indistinguishable from View

(P,V ∗)
V ∗ (x) when x ∈ L.

That is, for every PPT D, there is a negligible function ε such that for all x ∈ L,

|Pr
[
D(View

(P,V ∗)
V ∗ (x)) = 1

]
− Pr [D(S(x)) = 1] | ≤ ε(‖x‖).

Theorem 5 Above proof system for Quadratic Residuosity is (perfect) zero knowledge.

Proof: S(N, x):

1. Choose s
R← Z∗N .

2. Choose b
R←{0, 1}.

3. If b = 0, let y = s2 mod N . If b = 1, let y = s2 · x−1 mod N .

4. If V ∗((N, x), y) 6= b, try again (goto Step 1).

5. Else output (y, b, s).

Technical comment: in the de�nition of zero knowledge, we should also account for additional
information about x possessed by the veri�er (e.g. from a prior execution of the zero-knowledge
proof or from a higher-level protocol in which the zero-knowledge proof is being used). This is done
by giving an auxiliary input z to both V ∗ and S, and quantifying over all x ∈ L and all z.
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