CS 120/ E-177: Introduction to Cryptography

Salil Vadhan and Alon Rosen

Dec. 14, 2006

Lecture Notes 21:

Zero-Knowledge Proofs II

Recommended Reading.

- Vadhan, *Interactive & Zero-Knowledge Proofs*, from IAS/PCMI Summer School on Computational Complexity, Secs 1.1, 1.2, 2.1, 2.2.
- Goldreich, Chapter 4 (up to 4.4)

1 Zero Knowledge for NP

An NP-complete problem: GRAPH 3-COLORING.

- An (undirected) graph G = (W, E) is 3-colorable if there is a function $C : W \to \{R, Y, B\}$ such that for all $(u, v) \in E$, $C(u) \neq C(v)$.
- $3COL = \{G : G \text{ is } 3\text{-colorable}\}.$
- For every $L \in \mathbf{NP}$, there is a poly-time f such that $x \in L \Leftrightarrow f(x) \in 3$ COL.
- Moreover, given any **NP** proof system for L, we can choose f such that valid **NP** proofs for $x \in L$ can be mapped in poly-time to valid 3-colorings of f(x).

Cut and Choose:

- $G \in 3$ COL $\Leftrightarrow \exists C \ \left(\bigwedge_{(u,v) \in E} C(u) \neq C(v) \right).$
- If we randomly permute the 3 colors, each pair (C(u), C(v)) for $u \neq v$ reveals no information.
- Have prover 'commit' to randomized coloring C, verifier pick a random edge.

Physical Zero-Knowledge Proof: See video.

Definition 1 A commitment scheme over message space $\mathcal{P} = \bigcup_n \mathcal{P}_n$ is a polynomial-time computable function $\operatorname{Com}(m,k)$ satisfying:

- (Hiding) For every $m, m' \in \mathcal{P}_n$ such that ||m|| = ||m'||, $\operatorname{Com}(m, K) \stackrel{c}{\equiv} \operatorname{Com}(m', K)$, when $K \stackrel{c}{\leftarrow} \{0, 1\}^n$.
- (Binding) There do not exist $m \neq m'$ and k, k' such that $\operatorname{Com}(m, k) = \operatorname{Com}(m, k')$.

Zero-Knowledge Proof for GRAPH 3-COLORING

Common input: A graph G = (W, E) on n vertices. Prover's input: A valid 3-coloring $C : W \to \{R, Y, B\}$ (in case $G \in 3$ COL)

- 1. P: Choose a permutation $\pi : \{R, Y, B\} \to \{R, Y, B\}$ uniformly at random, and set $C' = \pi \circ C$. For every vertex $w \in W$, choose $k_w \stackrel{\mathbb{R}}{\leftarrow} \{0, 1\}^n$ and send $z_w = \operatorname{Com}(C'(w), k_w)$ to V.
- 2. V: Choose an edge $(u, v) \stackrel{\text{R}}{\leftarrow} E$, and send (u, v) to P.
- 3. P: Check that $(u, v) \in E$, and if so send C'(u), C'(v), k_u , k_v to V.
- 4. V: Accept if $C'(u) \neq C'(v)$, $z_u = \operatorname{Com}(C'(u), k_u)$ and $z_v = \operatorname{Com}(C'(v), k_v)$.

Theorem 2 Above is a zero-knowledge proof for GRAPH 3-COLORING.

Proof:

- Perfect completeness.
- Soundness error 1 1/|E|. Reduce by repetition.

Simulator S^{V^*} , on input G = (W, E):

- 1. Select $(u, v) \stackrel{\mathrm{R}}{\leftarrow} E$.
- 2. Define a coloring C' by setting (C'(u), C'(v)) to be two random distinct colors in $\{R, Y, B\}$, and setting C'(w) = R for all other vertices w.
- 3. For every $w \in W$, choose $k_w \stackrel{\mathsf{R}}{\leftarrow} \{0,1\}^n$, and set $z_w = \operatorname{Com}(C'(w), k_w)$.
- 4. Select random coin tosses r for V^* , and let $(u^*, v^*) = V^*(G, \{z_w\}_{w \in W}; r)$.
- 5. If $(u^*, v^*) \neq (u, v)$, output fail. Otherwise, output $(\{z_w\}_{w \in W}, (u, v), (k_u, k_v, C'(u), C'(v)); r)$.

Claim 3 For every PPT V^* and $G \in 3$ COL, we have

1. $S^{V^*}(G)$ succeeds with probability at least $1/|E| - \operatorname{neg}(n)$, and

2. The output distribution of $S^{V^*}(G)$, conditioned on success, is computationally indistinguishable from $\operatorname{View}_{V^*}^{(P,V)}((P,V)(G))$.

Repeat $n \cdot |E|$ times to eliminate failure.

Corollary 4 Every language in NP has a zero-knowledge proof.

2 Compiling Protocols to Handle Malicious Adversaries

First Attempt. Let (A, B) be a protocol for computing f(a, b) that is secure vs. honest-butcurious adversaries. Consider the following new protocol (A', B') when the two parties' inputs are a and b respectively.

- 1. A': Choose random coin tosses r_A for A and $k_A \stackrel{\mathbb{R}}{\leftarrow} \{0,1\}^n$, and send $z_A = \text{Com}((a,r_A),k_A)$.
- 2. B': Choose random coin tosses r_B for B and $k_B \stackrel{\mathbb{R}}{\leftarrow} \{0,1\}^n$, and send $z_B = \text{Com}((b,r_B),k_B)$.
- 3. A': Compute and send the first message m_1 of A, as $m_1 = A(a; r_A)$. Use a zero-knowledge proof to convince B' that m_1 is consistent with z_A . (Why is this an **NP** statement?)
- 4. B': If the zero-knowledge proof fails, abort. Otherwise, compute the first message m_2 of B, as $m_2 = B(b, m_2; r_B)$. Use a zero-knowledge proof to convince A' that m_2 is consistent with z_A and m_1 .

5. etc.

Q: How can one still cheat in this protocol?