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Lecture Notes 21:

Zero-Knowledge Proofs II

Recommended Reading.

• Vadhan, Interactive & Zero-Knowledge Proofs, from IAS/PCMI Summer School on Compu-
tational Complexity, Secs 1.1, 1.2, 2.1, 2.2.

• Goldreich, Chapter 4 (up to 4.4)

1 Zero Knowledge for NP

An NP-complete problem: Graph 3-Coloring.

• An (undirected) graph G = (W,E) is 3-colorable if there is a function C : W → {R, Y,B}
such that for all (u, v) ∈ E, C(u) 6= C(v).

• 3COL = {G : G is 3-colorable}.
• For every L ∈ NP, there is a poly-time f such that x ∈ L ⇔ f(x) ∈ 3COL.

• Moreover, given any NP proof system for L, we can choose f such that valid NP proofs for
x ∈ L can be mapped in poly-time to valid 3-colorings of f(x).

Cut and Choose:

• G ∈ 3COL ⇔ ∃C
(∧

(u,v)∈E C(u) 6= C(v)
)
.

• If we randomly permute the 3 colors, each pair (C(u), C(v)) for u 6= v reveals no information.

• Have prover ‘commit’ to randomized coloring C, verifier pick a random edge.

Physical Zero-Knowledge Proof: See video.
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Definition 1 A commitment scheme over message space P =
⋃

n Pn is a polynomial-time com-
putable function Com(m, k) satisfying:

• (Hiding) For every m,m′ ∈ Pn such that ‖m‖ = ‖m′‖, Com(m,K)
c≡ Com(m′,K), when

K
R←{0, 1}n.

• (Binding) There do not exist m 6= m′ and k, k′ such that Com(m, k) = Com(m, k′).

Zero-Knowledge Proof for Graph 3-Coloring

Common input: A graph G = (W,E) on n vertices.
Prover’s input: A valid 3-coloring C : W → {R, Y,B} (in case G ∈ 3COL)

1. P : Choose a permutation π : {R, Y,B} → {R, Y, B} uniformly at random, and set C ′ = π◦C.
For every vertex w ∈ W , choose kw

R←{0, 1}n and send zw = Com(C ′(w), kw) to V .

2. V : Choose an edge (u, v) R← E, and send (u, v) to P .

3. P : Check that (u, v) ∈ E, and if so send C ′(u), C ′(v), ku, kv to V .

4. V : Accept if C ′(u) 6= C ′(v), zu = Com(C ′(u), ku) and zv = Com(C ′(v), kv).

Theorem 2 Above is a zero-knowledge proof for Graph 3-Coloring.

Proof:

• Perfect completeness.

• Soundness error 1− 1/|E|. Reduce by repetition.

Simulator SV ∗, on input G = (W,E):

1. Select (u, v) R← E.

2. Define a coloring C ′ by setting (C ′(u), C ′(v)) to be two random distinct colors in {R, Y,B},
and setting C ′(w) = R for all other vertices w.

3. For every w ∈ W , choose kw
R←{0, 1}n, and set zw = Com(C ′(w), kw).

4. Select random coin tosses r for V ∗, and let (u∗, v∗) = V ∗(G, {zw}w∈W ; r).

5. If (u∗, v∗) 6= (u, v), output fail. Otherwise, output ({zw}w∈W , (u, v), (ku, kv, C
′(u), C ′(v)); r).

Claim 3 For every PPT V ∗ and G ∈ 3COL, we have

1. SV ∗(G) succeeds with probability at least 1/|E| − neg(n), and
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2. The output distribution of SV ∗(G), conditioned on success, is computationally indistinguish-
able from View

(P,V )
V ∗ ((P, V )(G)).

Repeat n · |E| times to eliminate failure.

Corollary 4 Every language in NP has a zero-knowledge proof.

2 Compiling Protocols to Handle Malicious Adversaries

First Attempt. Let (A,B) be a protocol for computing f(a, b) that is secure vs. honest-but-
curious adversaries. Consider the following new protocol (A′, B′) when the two parties’ inputs are
a and b respectively.

1. A′: Choose random coin tosses rA for A and kA
R←{0, 1}n, and send zA = Com((a, rA), kA).

2. B′: Choose random coin tosses rB for B and kB
R←{0, 1}n, and send zB = Com((b, rB), kB).

3. A′: Compute and send the first message m1 of A, as m1 = A(a; rA).
Use a zero-knowledge proof to convince B′ that m1 is consistent with zA. (Why is this an
NP statement?)

4. B′: If the zero-knowledge proof fails, abort. Otherwise, compute the first message m2 of B,
as m2 = B(b, m2; rB).
Use a zero-knowledge proof to convince A′ that m2 is consistent with zA and m1.

5. etc.

Q: How can one still cheat in this protocol?
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