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Lecture Notes 5:

Private-Key Encryption: Computational Security

Recommended Reading.
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Katz-Lindell 3.2, 3.3

Introduction
Motivation: Recall statistical security: for every mg, my; € P and set T of ciphertexts,
|Pr[Ex(mo) € T] — Pr[Ex(my) € T|| <e.

That is, there is no test 1" that distinguishes the encryptions of any pair of messages with
probability better than e.

— Still requires || > (1 —¢) - |P|.

(Computational) indistinguishability: only consider tests T defined by “feasible” algorithms A,
i.e. replace the event “Ex(m) € T” with “A(Ex(m)) = 17.

First Goal: Construct computationally secure encryption schemes that go beyond the Shannon
barrier (i.e. have |K| < |P)|.

— Still restricted to “one use” and passive adversary.

Later: Model and achieve security for multiple messages and active adversaries.

Asymptotic formalization

Need a security parameter 1": n is chosen by the sender and receiver in advance depending
on the level of security they want.

A “feasible” adversary is any poly(n)-time adversary. We will always allow the adversary to
be nonuniform, i.e. have a program of size poly(n).

Require that G, E, D all run in polynomial time (i.e. poly(n)). G now takes n as input (in
unary).

Main point: G, E, D run in some fixed polynomial time (e.g. time n?) but security must hold
against adversaries with even larger running time. Thus, as we set n larger and larger (e.g.
as technology improves), the scheme takes much less time to use than it does to break.

The message space can change with the security parameter: P = |J,, Pn. For example, P,
can be {0,1},{0,1}",{0,1}*.



e What should € be? A function € : N — [0,1] is negligible if for every ¢, there exists ng s.t.
g(n) < 1/n for all n > ny.

Definition 1 (indistinguishable encryptions (asymptotic version)) Let (G, E, D) be an en-
cryption scheme over P = |, Pn where all messages in Py have the same length. (G,E,D) has
(computationally) indistinguishable encryptions if for every (nonuniform) PPT A, there is a negli-
gible function € such that for all mg, my € Py,

[Pr[A(Ex (mo)) = 1] = Pr[A(Ex (m1)) = 1]| < e(n),

where the probabilities above are taken over K & G(1™), the coin tosses of Ex, and the coin tosses

of A.

In other words, no feasible algorithm /adversary can distinguish the encryptions of any pair of
messages with nonnegligible probability (a.k.a. “advantage”).

e To handle varying message lengths (e.g. P, = {0,1}*): only consider pairs (mg,m;) with
[mo| = [m1| < poly(n).
3 Concrete formalization

e feasible adversary — time < t on specific computational model (e.g. t = 2'% cycles on a
Pentium D) using a program of size < t.

e GG, E, D should all run in time < .

Definition 2 (indistinguishable encryptions (concrete version)) Let (G, E, D) be an encryp-
tion scheme over P where all messages in P have the same length. (G, E, D) is (t,)-secure if for
every probabilistic algorithm A running in time t and for all mg,my € P,

|Pr[A(Exk(mo)) = 1] — Pr[A(Ex(my)) = 1]| <e.

where the probabilities above are taken over K & G, the coin tosses of Ex, and the coin tosses of

A.

e (G doesn’t take any input.

4 Examples of Insecure Schemes

e Shift cipher
e Substitution cipher

e Biased one-time pad: G(1") : fori = {1,...,n}, set k; = {1 with pr. .49;0 with pr. .51}.
Output k =k ... ky,. P={0,1}", Ex(m) =m @ k.



5 Equivalent Definitions

Definition 3 (guessing-indistinguishability (Katz-Lindell)) Let (G, E, D) be an encryption
scheme over P = J,, Pn where all messages in Py, have the same length. An encryption scheme
(G, E, D) has guessing-indistinguishable encryptions if for every (nonuniform) PPT A, there is a
negligible function € such that A succeeds in the following game with probability at most 1/2+4¢e(n):

1. A outputs a pair of messages mg, my € Py.
2. A random key k & G(1") and a random bit b < {0,1} are chosen.
3. A is given c & Ex(my) and outputs a bit .

4. A succeeds if b’ = b.

Proposition 4 An encryption scheme has indistinguishable encryptions if and only if it has guessing-
indistinguishable encryptions.

Note reducibility argument: we show how to convert a poly-time algorithm A violating guessing-
indistinguishability into a poly-time algorithm violating indistinguishability. Similar in spirit to the
reductions done in NP-completeness (but more delicate to analyze, due to probabilities).

Definition 5 Let (G, E, D) be an encryption scheme over P = |J,, P, where all messages in P,
have the same length. An encryption scheme (G, E, D) satisfies semantic security if for every
nonuniform PPT A, there is a nonuniform PPT A’ such that for every distribution M on P,, every
function f : P, — {0,1}*, and every (nonuniform) PPT A,

PrlA(Ex(M)) = f(M)] Pr [A'(1") = f(M)] + neg(n)

<
< max{Pr[f(M) = v]} + neg(n),

where the probabilities are taken over M, K < G(1"), and the coin tosses of E and A.

e The function f captures the information about the message that the adversary is trying to
compute.

e Examples:

— f(m) = m: recovering entire plaintext.

— f(m) = my: recovering first bit.

e Semantic security says that the best an adversary can compute f after seeing the ciphertext
is essentially the same as before seeing the ciphertext — namely guess the most likely value.



Theorem 6 An encryption scheme has indistinguishable encryptions if and only if it has semantic
security.

Hence if we assume (or prove) indistinguishability (i.e. distinguishing encryptions is hard), then we
can deduce semantic security (i.e. computing information about the message is hard).

Proof: We’ll only prove that indistinguishable encryptions implies semantic security.

Let A be any PPT adversary, M a distribution on P, and f : P, — {0,1}* any function. Fix
any message mo € P, and let A’(1") be the algorithm that chooses k< G(1") and runs A(Ej(mo)).
Then,

PrlA(Ex(M)) = f(M)]

IN

Pr[A(Ek(m)) = f(M)] + neg(n)
Pr [A'(1") = f(M)] + neg(n)
< maX{Pr[ (M) = v|} + neg(n)



