CS 120/E-177: Introduction to Cryptography	
Salil Vadhan and Alon Rosen	
Lecture Notes 8:	
Computational Number Theory	Oct. 17, 2006

Recommended Reading.

- Katz-Lindell 7, 8.1, 8.2, 8.4, 8.5

1 Sampling a Random Prime

Fact 1 (Prime Number Theorem) \#\{primes $\leq x\} \sim \frac{x}{\ln x}$ as $x \rightarrow \infty$.
How do we sample a random n-bit prime number in time poly (n) ?

2 Modular arithmetic: \mathbb{Z}_{N} and \mathbb{Z}_{N}^{*}

Basic definitions:

- $x \equiv y(\bmod N)$ if $N \mid(x-y)$.
- $x \bmod N \stackrel{\text { def }}{=}\left[\right.$ unique $x^{\prime} \in\{0, \ldots, N-1\}$ s.t. $\left.x \equiv x^{\prime}(\bmod N)\right]$.
- $\mathbb{Z}_{N} \stackrel{\text { def }}{=}\{0, \ldots, N-1\}$ with arithmetic (,$\left.+ \cdot\right)$ modulo N.

Fact 2 (Extended Euclidean Algorithm) For any $x, y \in \mathbb{N}$ there exists two integers a, b such that $a x+b y=\operatorname{gcd}(x, y)$. Moreover, such a and b can be found in polynomial time.

Definition of \mathbb{Z}_{N}^{*}

$$
\mathbb{Z}_{N}^{*} \stackrel{\text { def }}{=}\left\{x \in \mathbb{Z}_{N}: \operatorname{gcd}(x, N)=1\right\}=\text { elements of } \mathbb{Z}_{N} \text { with multiplicative inverses }
$$

By a multiplicative inverse for x we mean an element $y \in \mathbb{Z}_{N}$, denoted $y=x^{-1}$, such that $x \cdot y \equiv 1(\bmod N)$. (the equality is proved using the Extended Euclidean Algorithm). Given N and $x \in \mathbb{Z}_{N}$, we can compute x^{-1} in polynomial time.

Euler phi function

$$
\phi(N) \stackrel{\text { def }}{=}\left|Z_{N}^{*}\right|
$$

Fact 3

$$
\phi(N)=N \cdot \prod_{\text {primes } p \mid N}\left(1-\frac{1}{p}\right) \geq \frac{N}{6 \log \log N}
$$

This lower bound means that we can generate random elements from \mathbb{Z}_{N}^{*} in time poly $(|N|)=$ $\operatorname{poly}(n)$: we pick a random element in \mathbb{Z}_{N} and compute its gcd with N. If the gcd is equal to 1 then we have found an element of \mathbb{Z}_{N}^{*}. The probability of success is $\frac{\phi(N)}{N}$ so the expected number of trials is $\Theta\left(\frac{N}{\phi(N)}\right)=O(\log \log N)=O(\log \|N\|)$.
Computing $\phi(N)$ from N is as hard as factoring.

Groups

- A group G is a set G with binary operation \star satisfying associativity, identity, inverses. All ours will also be commutative.
- Examples: \mathbb{Z}_{N} under addition, \mathbb{Z}_{N}^{*} under multiplication.
- Fact: In any group $G, \underbrace{x \star x \star \cdots \star x}_{|G|}=$ id for all $x \in G$.

Corollary : $\forall x \in \mathbb{Z}_{N}^{*}, x^{\phi(N)} \equiv 1(\bmod N)$

Facts about \mathbb{Z}_{p} when p prime

- $\mathbb{Z}_{p}^{*}=\mathbb{Z}_{p} \backslash\{0\}$ (because $\phi(p)=p-1$) and \mathbb{Z}_{p} is a field.
- Fermat's Little Theorem: For every $a \in \mathbb{Z}_{p}^{*}, a^{p-1} \equiv 1(\bmod p)$.
- A polynomial of degree d has at most d solutions $\bmod p$.
- For every prime p, there is a $g \in \mathbb{Z}_{p}^{*}$ such that $\left\{1 \bmod p, g \bmod p, g^{2} \bmod p, g^{3} \bmod p, \ldots, g^{p-2} \bmod \right.$ $p\}=\mathbb{Z}_{p}^{*}$. Such a g is called a generator of \mathbb{Z}_{p}^{*}.
- Discrete logarithm: For $x \in \mathbb{Z}_{p}^{*}, \log _{g} x \stackrel{\text { def }}{=}\left[\right.$ unique $i \in\{0, \ldots, p-2\}$ s.t. $\left.g^{i} \equiv x(\bmod p)\right]$. Computing the discrete logarithm is believed to be hard, even if p and g are known.
- Fact 4 We can generate random n-bit prime p together with a (random) generator of \mathbb{Z}_{p}^{*} time $\operatorname{poly}(n)$.

3 Chinese Remainder Theorem

Fact 5 (Chinese Remainder Theorem) Let $N=p q$ with $\operatorname{gcd}(p, q)=1$. Then the map $x \mapsto(x$ $\bmod p, x \bmod q)$ from \mathbb{Z}_{N} to $\mathbb{Z}_{p} \times \mathbb{Z}_{q}$ is one-to-one and onto. In particular, for every $(y, z) \in$ $\mathbb{Z}_{p} \times \mathbb{Z}_{q}$, there exists a unique $x \in \mathbb{Z}_{N}$ s.t. $x \equiv y(\bmod p)$ and $x \equiv z(\bmod q)$. Moreover, x can be found in polynomial time given (y, z, p, q).
Proof: We will describe the inverse. By Extended Euclidean algorithm, can find a, b such that $a p+b q=g c d(p, q)=1$. Let $c=b q, d=a p$ (Chinese Remainder Coefficients). Then $c \equiv 1(\bmod p)$, $c \equiv 0(\bmod q), d \equiv 1(\bmod q)$ and $d \equiv 0(\bmod p)$. The inverse map is $(y, z) \mapsto x=c y+d z$ $\bmod N$.
We have

$$
c y+d z \equiv 1 \cdot y+0 \cdot z \equiv y \quad(\bmod p)
$$

and

$$
c y+d z \equiv 0 \cdot y+1 \cdot z \equiv z \quad(\bmod q)
$$

This shows that the map is onto and $\left|\mathbb{Z}_{N}\right|=\left|\mathbb{Z}_{p} \times Z_{q}\right|$ so the map is also one-to-one. The computation of x can be done in polynomial time because the extended Euclidean algorithm is poly $(\|p\|,\|q\|)$ and we can compute c and d efficiently.

Using the Chinese Remainder Theorem, an arithmetic question modulo N can be reduced to an arithmetic problem modulo p and modulo q, provided we know the factorization of N.

4 Quadratic Residues

We define $\mathrm{QR}_{N} \stackrel{\text { def }}{=}\left\{x^{2} \bmod N: x \in \mathbb{Z}_{N}^{*}\right\}$.

Proposition 6 When p odd prime, $\left|\mathrm{QR}_{p}\right|=\left|\mathbb{Z}_{p}^{*}\right| / 2=(p-1) / 2$.
Proof: Consider the map from $\mathbb{Z}_{p}^{*} \rightarrow \mathbb{Z}_{p}^{*}$, given by $x \mapsto x^{2}$. A square in \mathbb{Z}_{p}^{*} has at least two square roots because $a^{2} \equiv(-a)^{2} \bmod p$ and $a \not \equiv-a \bmod p$ as p is odd. A square in \mathbb{Z}_{p}^{*} has at most two square roots: \mathbb{Z}_{p} is a field so a polynomial of degree d has at most d roots modulo p. We consider the polynomial $x^{2}-c \equiv 0(\bmod p)$: for any c, the polynomial has at most two roots in \mathbb{Z}_{p}. The map is hence exactly 2 to 1 .

Proposition 7 When $N=p q$ for odd primes $p, q,\left|\mathrm{QR}_{N}\right|=\left|\mathbb{Z}_{N}^{*}\right| / 4$ and $x \mapsto x^{2}$ is 4-to- 1 on \mathbb{Z}_{N}^{*}.
Proof: Let us prove that $y \in \mathrm{QR}_{N} \Longleftrightarrow\left(y \bmod p \in \mathrm{QR}_{p}\right)$ and $\left(y \bmod q \in \mathrm{QR}_{q}\right)$.

Thus, by the Chinese Remainder Theorem $y \equiv(c x+d z)^{2} \bmod N$. The map $x \mapsto x^{2}$ is 4 -to- 1 on \mathbb{Z}_{N}^{*}.

$$
\left|\mathrm{QR}_{N}\right|=\left|\mathbb{Z}_{N}^{*}\right| / 4=\frac{(p-1)}{2} \cdot \frac{(q-1)}{2}
$$

