CS 120/ E-177: Introduction to Cryptography

Salil Vadhan and Alon Rosen

Oct. 17, 2006

Lecture Notes 8:

Computational Number Theory

Recommended Reading.

• Katz-Lindell 7, 8.1, 8.2, 8.4, 8.5

1 Sampling a Random Prime

Fact 1 (Prime Number Theorem) $\#\{primes \le x\} \sim \frac{x}{\ln x} \text{ as } x \to \infty.$

How do we sample a random n-bit prime number in time poly(n)?

2 Modular arithmetic: \mathbb{Z}_N and \mathbb{Z}_N^*

Basic definitions:

- $x \equiv y \pmod{N}$ if N|(x-y).
- $x \mod N \stackrel{\text{def}}{=} [\text{unique } x' \in \{0, \dots, N-1\} \text{ s.t. } x \equiv x' \pmod{N}].$
- $\mathbb{Z}_N \stackrel{\text{def}}{=} \{0, \dots, N-1\}$ with arithmetic $(+, \cdot)$ modulo N.

Fact 2 (Extended Euclidean Algorithm) For any $x, y \in \mathbb{N}$ there exists two integers a, b such that $ax + by = \gcd(x, y)$. Moreover, such a and b can be found in polynomial time.

Definition of \mathbb{Z}_N^*

 $\mathbb{Z}_N^* \stackrel{\text{def}}{=} \{x \in \mathbb{Z}_N : \gcd(x, N) = 1\} = \text{elements of } \mathbb{Z}_N \text{ with multiplicative inverses}$

By a multiplicative inverse for x we mean an element $y \in \mathbb{Z}_N$, denoted $y = x^{-1}$, such that $x \cdot y \equiv 1 \pmod{N}$. (the equality is proved using the Extended Euclidean Algorithm). Given N and $x \in \mathbb{Z}_N$, we can compute x^{-1} in polynomial time.

Euler phi function

$$\phi(N) \stackrel{\text{def}}{=} |Z_N^*|$$

Fact 3

$$\phi(N) = N \cdot \prod_{primes \ p \mid N} \left(1 - \frac{1}{p}\right) \ge \frac{N}{6 \text{loglog}N}$$

This lower bound means that we can generate random elements from \mathbb{Z}_N^* in time $\operatorname{poly}(|N|) = \operatorname{poly}(n)$: we pick a random element in \mathbb{Z}_N and compute its gcd with N. If the gcd is equal to 1 then we have found an element of \mathbb{Z}_N^* . The probability of success is $\frac{\phi(N)}{N}$ so the expected number of trials is $\Theta\left(\frac{N}{\phi(N)}\right) = O(\operatorname{loglog} N) = O(\log ||N||)$. Computing $\phi(N)$ from N is as hard as factoring.

Groups

- A group G is a set G with binary operation \star satisfying associativity, identity, inverses. All ours will also be commutative.
- Examples: \mathbb{Z}_N under addition, \mathbb{Z}_N^* under multiplication.
- Fact: In any group G, $\underbrace{x \star x \star \cdots \star x}_{|G|}$ = id for all $x \in G$.

Corollary : $\forall x \in \mathbb{Z}_N^*, \ x^{\phi(N)} \stackrel{|G|}{\equiv} 1 \pmod{N}$

Facts about \mathbb{Z}_p when p prime

- $\mathbb{Z}_p^* = \mathbb{Z}_p \setminus \{0\}$ (because $\phi(p) = p 1$) and \mathbb{Z}_p is a field.
- Fermat's Little Theorem: For every $a \in \mathbb{Z}_p^*$, $a^{p-1} \equiv 1 \pmod{p}$.
- A polynomial of degree d has at most d solutions mod p.
- For every prime p, there is a $g \in \mathbb{Z}_p^*$ such that $\{1 \mod p, g \mod p, g^2 \mod p, g^3 \mod p, \ldots, g^{p-2} \mod p\} = \mathbb{Z}_p^*$. Such a g is called a *generator* of \mathbb{Z}_p^* .
- Discrete logarithm: For $x \in \mathbb{Z}_p^*$, $\log_g x \stackrel{\text{def}}{=} [\text{unique } i \in \{0, \dots, p-2\} \text{ s.t. } g^i \equiv x \pmod{p}]$. Computing the discrete logarithm is believed to be hard, even if p and g are known.
- Fact 4 We can generate random n-bit prime p together with a (random) generator of \mathbb{Z}_p^* time poly(n).

3 Chinese Remainder Theorem

Fact 5 (Chinese Remainder Theorem) Let N = pq with gcd(p,q) = 1. Then the map $x \mapsto (x \mod p, x \mod q)$ from \mathbb{Z}_N to $\mathbb{Z}_p \times \mathbb{Z}_q$ is one-to-one and onto. In particular, for every $(y, z) \in \mathbb{Z}_p \times \mathbb{Z}_q$, there exists a unique $x \in \mathbb{Z}_N$ s.t. $x \equiv y \pmod{p}$ and $x \equiv z \pmod{q}$. Moreover, x can be found in polynomial time given (y, z, p, q).

Proof: We will describe the inverse. By Extended Euclidean algorithm, can find a, b such that ap+bq = gcd(p,q) = 1. Let c = bq, d = ap (*Chinese Remainder Coefficients*). Then $c \equiv 1 \pmod{p}$, $c \equiv 0 \pmod{q}$, $d \equiv 1 \pmod{q}$ and $d \equiv 0 \pmod{p}$. The inverse map is $(y, z) \mapsto x = cy + dz \mod N$.

We have

 $cy + dz \equiv 1 \cdot y + 0 \cdot z \equiv y \pmod{p}$

and

$$cy + dz \equiv 0 \cdot y + 1 \cdot z \equiv z \pmod{q}$$

This shows that the map is onto and $|\mathbb{Z}_N| = |\mathbb{Z}_p \times Z_q|$ so the map is also one-to-one. The computation of x can be done in polynomial time because the extended Euclidean algorithm is poly(||p||, ||q||) and we can compute c and d efficiently.

Using the Chinese Remainder Theorem, an arithmetic question modulo N can be reduced to an arithmetic problem modulo p and modulo q, provided we know the factorization of N.

4 Quadratic Residues

We define $\operatorname{QR}_N \stackrel{\text{def}}{=} \{x^2 \mod N : x \in \mathbb{Z}_N^*\}.$

Proposition 6 When p odd prime, $|QR_p| = |\mathbb{Z}_p^*|/2 = (p-1)/2$.

Proof: Consider the map from $\mathbb{Z}_p^* \to \mathbb{Z}_p^*$, given by $x \mapsto x^2$. A square in \mathbb{Z}_p^* has at least two square roots because $a^2 \equiv (-a)^2 \mod p$ and $a \not\equiv -a \mod p$ as p is odd. A square in \mathbb{Z}_p^* has at most two square roots: \mathbb{Z}_p is a field so a polynomial of degree d has at most d roots modulo p. We consider the polynomial $x^2 - c \equiv 0 \pmod{p}$: for any c, the polynomial has at most two roots in \mathbb{Z}_p . The map is hence exactly 2 to 1.

Proposition 7 When N = pq for odd primes p, q, $|QR_N| = |\mathbb{Z}_N^*|/4$ and $x \mapsto x^2$ is 4-to-1 on \mathbb{Z}_N^* .

Proof: Let us prove that $y \in QR_N \iff (y \mod p \in QR_p)$ and $(y \mod q \in QR_q)$.

Thus, by the Chinese Remainder Theorem $y \equiv (cx + dz)^2 \mod N$. The map $x \mapsto x^2$ is 4-to-1 on \mathbb{Z}_N^* .

$$|\mathbf{QR}_N| = |\mathbb{Z}_N^*|/4 = \frac{(p-1)}{2} \cdot \frac{(q-1)}{2}$$