CS 120: Introduction to Cryptography
Salil Vadhan and Alon Rosen
Oct. 19, 2006

Lecture Notes 9:
 Collections of One-Way Functions

Recommended Reading.

- Katz-Lindell 8.4.4, 8.5.4, 8.5.5

1 Definition

Definition $1 \mathcal{F}=\left\{f_{\text {key }}: D_{\text {key }} t o R_{\text {key }}\right\}_{\text {key } \in \mathcal{K}}$ is a collection of one-way functions if:

1. There is a $\operatorname{PPT} G\left(1^{n}\right)$ which outputs a key key $\in \mathcal{K}$
2. Given key, one can sample uniformly from $D_{\text {key }}$ in polynomial time.
3. Given key and $x \in D_{\text {key }}$, one can evaluate $f_{\text {key }}(x)$ in polynomial time.
4. For every (nonuniform) PPT A, there is a negligible function ε such that

$$
\operatorname{Pr}\left[A\left(1^{n}, K, f_{K}(X)\right) \in f_{K}^{-1}\left(f_{K}(X)\right)\right] \leq \varepsilon(n) \quad \forall n
$$

where the probability is taken over $K \stackrel{R}{\leftarrow} G\left(1^{n}\right), X \stackrel{R}{\leftarrow} D_{\text {key }}$, and the coin tosses of A.
If for every key, $D_{\text {key }}=R_{\text {key }}$ and $f_{\text {key }}$ is a permutation, then we call \mathcal{F} a collection of one-way permutations.

- (1) = we can choose a function of the family efficiently by choosing a key key. (Note that the keys are not necessarily integers.)
- (2) = we can select an input at random. (Note that this condition wasn't necessary for a OWF because a OWF takes strings as inputs.)
- (3) = each function is easy to compute in the forward direction.
- (4) = each function is hard to invert on a random input. The key key is given to the adversary since it should also be able to evaluate the function $f_{\text {key }}$.

2 The RSA Functions

Keys $\mathcal{K}=\left\{(N, e): N=p \cdot q\right.$ where p and q are primes, $\|p\|=\|q\|$ and $\left.e \in \mathbb{Z}_{\phi(N)}^{*}\right\}$
Generation The PPT $G\left(1^{n}\right)$ does as follows :

- Generate random n-bit primes p, q
- Let $N=p q$
- Generate random $e \stackrel{\mathrm{R}}{\leftarrow} \mathbb{Z}_{\phi(N)}^{*}$, i.e. $\operatorname{gcd}(e, \phi(N))=1$
- Output (N, e)

Function $f_{N, e}: \mathbb{Z}_{N}^{*} \rightarrow \mathbb{Z}_{N}^{*}$ given by $f_{N, e}(x)=x^{e} \bmod N$.
Proposition $2 R S A$ is a collection of permutations
Proof: For each key $=(N, e), D_{\text {key }}=R_{\text {key }}$. To show that each $f_{N, e}$ is a permutation, we will give the inverse map. $e \in \mathbb{Z}_{\phi(N)}^{*}$ so there exists d such that $e d \equiv 1(\bmod \phi(N))$. We claim that $y \mapsto y^{d} \bmod N$ is the inverse map:

$$
\left(f_{N, e}(x)\right)^{d} \equiv\left(x^{e}\right)^{d} \equiv x^{e d} \equiv x \quad(\bmod N)
$$

The key point is that exponents work modulo $\phi(N)$.
Proposition 3 RSA is a collection of one-way functions only if the Factoring Assumption holds.
The Factoring Assumption is therefore a necessary condition for RSA to be a collection of oneway functions. The converse ("if the Factoring Assumption holds, then RSA is a collection of OWFs") is still open.

3 Rabin's Functions

Keys $\mathcal{K}=\{N: N=p \cdot q$ where p and q are primes and $\|p\|=\|q\|\}$
Generation The PPT $G\left(1^{n}\right)$ generates random n-bit primes p, q and outputs $N=p \cdot q$.
Function $f_{N}: \mathbb{Z}_{N}^{*} \rightarrow \mathbb{Z}_{N}^{*}$ given by $f_{N}(x)=x^{2} \bmod N$.
Note that this is not a special case of RSA because 2 and $\phi(N)$ are not relatively prime.
Proposition 4 Rabin's collection is a collection of one-way functions if and only if the Factoring Assumption holds.

Proof: We'll show the "if" direction. Suppose there were a PPT adversary A inverting Rabin's collection with nonnegligible probability $\varepsilon(n)$, where the probability is taken over the choice of N, x and the coin tosses of A. We'll convert A into a PPT adversary A^{\prime} which factors with probability $\varepsilon(n) / 2$.

Define $A^{\prime}(N)$ as follows:

1. Choose $x \stackrel{\mathrm{R}}{\leftarrow} \mathbb{Z}_{N}^{*}$.
2. Let $z=x^{2} \bmod N$.
3. Let $y \stackrel{\mathrm{R}}{\leftarrow} A(z, N)$.
4. Output $\operatorname{gcd}(x-y, N)$.

When N is the product of two random n-bit primes, then $A^{\prime}(N)$ feeds A the same distribution as when trying to invert Rabin's collection. When A succeeds, we have

$$
(x+y)(x-y) \equiv x^{2}-y^{2} \equiv 0 \quad(\bmod N) \Rightarrow N \mid(x-y)(x+y)
$$

This means that:

- both p and q are factors of $x+y$, i.e. $N \mid(x+y)$
- OR both p and q are factors of $x-y$, i.e. $N \mid(x-y)$.
- OR one is a factor of $x+y$ and the other is a factor of $x-y$.

Hence $\operatorname{gcd}(x-y, N) \in\{p, q\}$ provided that $y \not \equiv \pm x(\bmod N)$. This event happens with probability $1 / 2$ if A has found a square root of z (because there are four square roots of z and A has no information about which one is x). This analysis shows that A^{\prime} factors a random N with probability $\varepsilon(n) / 2$.

Note that Rabin's functions are not permutations because the map f_{N} is 4 to 1 . We can obtain permutations by restricting to $p \equiv q \equiv 3(\bmod 4)$ and considering $f_{N}: \mathrm{QR}_{N} \rightarrow \mathrm{QR}_{N}$.

4 Modular Exponentiation

Keys $\mathcal{K}=\left\{(p, g): p\right.$ is prime and g is a generator of $\left.\mathbb{Z}_{p}^{*}\right\}$.
Generation $G\left(1^{n}\right)$ generates a random n-bit prime p together with a random generator g of \mathbb{Z}_{p}^{*} and outputs (p, g).

Function $f_{p, g}: \mathbb{Z}_{p-1} \rightarrow \mathbb{Z}_{p}^{*}$ given by $f_{p, g}(x)=g^{x} \bmod p$.
The inversion problem is : given (p, g, y), output x such that $x=\log _{g} y$. This is the Discrete Log Problem, for which the fastest known algorithm has running time $\exp \left(O\left(n^{1 / 3}(\log n)^{2 / 3}\right)\right)$.

Note that $f_{p, g}$ is a permutation if we identify \mathbb{Z}_{p-1} and \mathbb{Z}_{p}^{*} (e.g. treat $0 \in \mathbb{Z}_{p-1}$ as $p-1$).

5 Single one-way functions vs. collections

Proposition 5 A collection of one-way functions exists iff one-way functions exist.
Proof: $\quad \Rightarrow$ The idea is to define $g($ key,$x)=\left(\right.$ key, $\left.f_{\text {key }}(x)\right)$, but as a OWF takes a string as input, we will actually use coin tosses of $G\left(1^{n}\right)$ and $D_{\text {key }}$-sampler as input to g.
Let r_{1} be the coin tosses of $G\left(1^{n}\right)$ (key $=G\left(1^{n}, r_{1}\right)$). Let r_{2} be the coin tosses of $D_{\text {key }}$-sampler (x is the output of $D_{\text {key }}$-sampler with coin tosses $\left.r_{2}\right)$. We define $f\left(r_{1}, r_{2}\right)=\left(\right.$ key, $\left.f_{\text {key }}(x)\right)$ \Leftarrow Exercise.

