CS 120: Introduction to Cryptography

Salil Vadhan and Alon Rosen

Oct. 19, 2006

Lecture Notes 9:

Collections of One-Way Functions

Recommended Reading.

• Katz-Lindell 8.4.4, 8.5.4, 8.5.5

1 Definition

Definition 1 $\mathcal{F} = \{f_{\text{key}} : D_{\text{key}} to R_{\text{key}} \}_{\text{key} \in \mathcal{K}}$ is a collection of one-way functions *if*:

- 1. There is a PPT $G(1^n)$ which outputs a key $key \in \mathcal{K}$
- 2. Given key, one can sample uniformly from D_{key} in polynomial time.
- 3. Given key and $x \in D_{key}$, one can evaluate $f_{key}(x)$ in polynomial time.
- 4. For every (nonuniform) PPT A, there is a negligible function ε such that

$$\Pr\left[A(1^n, K, f_K(X)) \in f_K^{-1}(f_K(X))\right] \le \varepsilon(n) \qquad \forall n$$

where the probability is taken over $K \stackrel{\scriptscriptstyle R}{\leftarrow} G(1^n)$, $X \stackrel{\scriptscriptstyle R}{\leftarrow} D_{\mathsf{key}}$, and the coin tosses of A.

If for every key, $D_{\text{key}} = R_{\text{key}}$ and f_{key} is a permutation, then we call \mathcal{F} a collection of one-way permutations.

- (1) = we can choose a function of the family efficiently by choosing a key key. (Note that the keys are not necessarily integers.)
- (2) = we can select an input at random. (Note that this condition wasn't necessary for a OWF because a OWF takes strings as inputs.)
- (3) = each function is easy to compute in the forward direction.
- (4) = each function is hard to invert on a random input. The key key is given to the adversary since it should also be able to evaluate the function f_{key} .

2 The RSA Functions

Keys $\mathcal{K} = \{(N, e) : N = p \cdot q \text{ where } p \text{ and } q \text{ are primes, } ||p|| = ||q|| \text{ and } e \in \mathbb{Z}_{\phi(N)}^* \}$

Generation The PPT $G(1^n)$ does as follows :

- Generate random n-bit primes p, q
- Let N = pq

- Generate random $e \stackrel{\text{\tiny R}}{\leftarrow} \mathbb{Z}^*_{\phi(N)}$, i.e. $gcd(e, \phi(N)) = 1$
- Output (N, e)

Function $f_{N,e}: \mathbb{Z}_N^* \to \mathbb{Z}_N^*$ given by $f_{N,e}(x) = x^e \mod N$.

Proposition 2 RSA is a collection of permutations

Proof: For each key = (N, e), $D_{\text{key}} = R_{\text{key}}$. To show that each $f_{N,e}$ is a permutation, we will give the inverse map. $e \in \mathbb{Z}_{\phi(N)}^*$ so there exists d such that $ed \equiv 1 \pmod{\phi(N)}$. We claim that $y \mapsto y^d \mod N$ is the inverse map:

$$(f_{N,e}(x))^d \equiv (x^e)^d \equiv x^{ed} \equiv x \pmod{N}.$$

The key point is that exponents work modulo $\phi(N)$.

Proposition 3 RSA is a collection of one-way functions only if the Factoring Assumption holds.

The Factoring Assumption is therefore a necessary condition for RSA to be a collection of oneway functions. The converse ("if the Factoring Assumption holds, then RSA is a collection of OWFs") is still open.

3 Rabin's Functions

Keys $\mathcal{K} = \{N : N = p \cdot q \text{ where } p \text{ and } q \text{ are primes and } ||p|| = ||q||\}$

Generation The PPT $G(1^n)$ generates random *n*-bit primes p, q and outputs $N = p \cdot q$.

Function $f_N : \mathbb{Z}_N^* \to \mathbb{Z}_N^*$ given by $f_N(x) = x^2 \mod N$.

Note that this is not a special case of RSA because 2 and $\phi(N)$ are not relatively prime.

Proposition 4 Rabin's collection is a collection of one-way functions if and only if the Factoring Assumption holds.

Proof: We'll show the "if" direction. Suppose there were a PPT adversary A inverting Rabin's collection with nonnegligible probability $\varepsilon(n)$, where the probability is taken over the choice of N, x and the coin tosses of A. We'll convert A into a PPT adversary A' which factors with probability $\varepsilon(n)/2$.

Define A'(N) as follows:

- 1. Choose $x \stackrel{\mathrm{R}}{\leftarrow} \mathbb{Z}_N^*$.
- 2. Let $z = x^2 \mod N$.
- 3. Let $y \stackrel{\mathrm{R}}{\leftarrow} A(z, N)$.
- 4. Output gcd(x y, N).

When N is the product of two random n-bit primes, then A'(N) feeds A the same distribution as when trying to invert Rabin's collection. When A succeeds, we have

 $(x+y)(x-y) \equiv x^2 - y^2 \equiv 0 \pmod{N} \Rightarrow N|(x-y)(x+y)|$

This means that:

- both p and q are factors of x + y, i.e. N|(x + y)
- OR both p and q are factors of x y, i.e. N|(x y).
- OR one is a factor of x + y and the other is a factor of x y.

Hence $gcd(x - y, N) \in \{p, q\}$ provided that $y \not\equiv \pm x \pmod{N}$. This event happens with probability 1/2 if A has found a square root of z (because there are four square roots of z and A has no information about which one is x). This analysis shows that A' factors a random N with probability $\varepsilon(n)/2$.

Note that Rabin's functions are *not* permutations because the map f_N is 4 to 1. We can obtain permutations by restricting to $p \equiv q \equiv 3 \pmod{4}$ and considering $f_N : \operatorname{QR}_N \to \operatorname{QR}_N$.

4 Modular Exponentiation

Keys $\mathcal{K} = \{(p, g) : p \text{ is prime and } g \text{ is a generator of } \mathbb{Z}_p^* \}.$

Generation $G(1^n)$ generates a random *n*-bit prime *p* together with a random generator *g* of \mathbb{Z}_p^* and outputs (p, g).

Function $f_{p,g}: \mathbb{Z}_{p-1} \to \mathbb{Z}_p^*$ given by $f_{p,g}(x) = g^x \mod p$.

The inversion problem is : given (p, g, y), output x such that $x = \log_g y$. This is the Discrete Log Problem, for which the fastest known algorithm has running time exp $(O(n^{1/3}(\log n)^{2/3}))$.

Note that $f_{p,g}$ is a permutation if we identify \mathbb{Z}_{p-1} and \mathbb{Z}_p^* (e.g. treat $0 \in \mathbb{Z}_{p-1}$ as p-1).

5 Single one-way functions vs. collections

Proposition 5 A collection of one-way functions exists iff one-way functions exist.

Proof: \Rightarrow The idea is to define $g(\text{key}, x) = (\text{key}, f_{\text{key}}(x))$, but as a OWF takes a string as input, we will actually use coin tosses of $G(1^n)$ and D_{key} -sampler as input to g.

Let r_1 be the coin tosses of $G(1^n)$ (key = $G(1^n, r_1)$). Let r_2 be the coin tosses of D_{key} -sampler (x is the output of D_{key} -sampler with coin tosses r_2). We define $f(r_1, r_2) = (\text{key}, f_{\text{key}}(x)) \in \text{Exercise}$.