Scribe Notes for CS221

Lecture 3: 9/25/02

Announcements:

· Scribenotes due 1 week after lecture

· – Use latex macros/template from website

· Give Emanuele your email address if you haven’t registered for the class

· Sections, Intros

Agenda

· Last Comments on TM

· Time Hierarchy Theorem(s)

Correction on Universal TM

U(M, x) = M(x)

· Running time: O(|M
[image: image1.wmf]|2 ∙ Time(M, x)2)

· Space: O(|M| + (log|M|) ∙ Space(M, x))

Last Comments on TM
What does the |M|2 or log|M| represent?

|M| = size of Program/Hardware

U has:
fixed program

fixed number of states

fixed number of tapes

fixed alphabet size

but must simulate TM’s with arbitrary number of states, tapes, and alphabet size.

What does this mean?

Given an M with k work tapes, with each cell of the the tape having a symbol fro the alphabet ∑, how does U(M, x) work?

The input tape: The encoding for M, followed by input, x.

1st work tape: Encoding of M

2nd work tape: 1st tape of M, 2nd tape of M, etc…

Each symbol of M is stored in log|∑| bits and there is a marker to indicate where the cursor is.

So, to simulate 1 time-step of M

· Scans 2nd work tape to scan k symbols

· Look-up in transition table of M

· Update 2nd work tape

The 1st and 3rd step take the dominant work load.

These two steps ≤ Space (M, x) ≤ Time (M, x)

Can we improve on Time(M, x)2 be improved (in O(Time))?

There is a more efficient, complicated solution: Time(M, x) ∙ log(Time(M, x))

Linear Speed Up

[image: image2.wmf].

(constant)

c

of

factor

a

by

smaller

is

input

every

on

space

and

 time

running

 whose

TM

another

by

simulated

be

can

TM

Any

f

"

This means that one can always speed-up TMs provided:

Time ≥ (1 + c) n

Space ≥ c

How?

Use a larger ∑ s.t. each symbol of the new machine, M’, represents ~f symbols of M, and each step of M’ represents ~f steps in M.

Time(f(n)) = {languages that can be decided by time f(n) TM}

[image: image3.wmf])

(

U

m

V

V

>

=

n

Time

P

“class of problems that can be solved in polynomial time”

known as feasible computation.

Why use P?

· P is robust under changes of model of computation →

Church-Turing hypothesis.

· Encoding of inputs is still robust

· Smallest robust class containing linear time

[image: image4.wmf]U

0

)

2

(

>

=

c

n

c

TIME

EXP

“problems solvable in Time (2Polynomial)”

e.g. SAT, TSP, Factoring

[image: image5.wmf]EXP

P

Í

will prove

[image: image6.wmf]EXP

P

¹

Major goal of complexity theory:

· Identify natural problems not in P

· Halting Problem, undecidable problem not in P

· Show decidable problems not in P

Time Hierarchy Theorem
“more time helps” – allowing more running time means more problems can be solved. (for nice running times)

What is nice running time?

Definition:

[image: image7.wmf]O(f(n)).

space

)and

f(n)

O(n

time

in

computable

is

1

1

if

function

complexity

proper

a

is

:

)

(

n

+

®

®

N

n

f

N

f

f :

[image: image8.wmf]etc...

,

n!

,

2

5n,

,

n

3n,

e.g.

n

2

So what does the Theorem say?

If f is a proper complexity function, then TIME(f(n)) is a strict subset of TIME(n2 ∙ f(n) 2).
If you allow yourself polynomial more time, then you solve problem you normally couldn’t solve.

Proof:

[image: image9.wmf]M(x).

(x)

M

s.t.

input x

an

exists

 there

f(n),

in time

running

M

s.t.

)

f(n)

·

(n

O

in time

running

M,

TM,

Design

|

i

2

2

¹

"

Diagonalization:

Enumerate TM lexicographically

M1
M2
M3
……..
 M

x1
0
1

x2
0
X

x3
1
0

.

.
0
1

.

M(xi) : simulate Mi on input xi for f(|xi|) steps. If Mi halts, out opposite, if not, output 0.

Because f(xi) is a proper complexity function, M(xi) will compute f(xi).

· M runs in time O(|M2| f(|Mi|)2 f(xi)) = O (n2 f(n2))

· L(M) ≠ Time (f(n))

Corollary:

P is a strict subset of EXP

[image: image10.wmf]EXP

)

)

(

 TIME(n

)

 Time (

P

n

n

£

Í

=

2

2

2

2

:

Pf

_1095180467.unknown

_1095180657.unknown

_1095181257.unknown

_1095181673.unknown

_1095182324.unknown

_1095181072.unknown

_1095180612.unknown

_1095176510.unknown

_1095180095.unknown

_1095175797.unknown

